Page 1 Next

## Displaying 1 – 20 of 66

Showing per page

Acta Arithmetica

### A note on Artin's conjecture in algebraic number fields.

Journal für die reine und angewandte Mathematik

Acta Arithmetica

### A problem of D. H. Lehmer and its generalization (II)

Compositio Mathematica

### A remark on Artin's conjecture.

Inventiones mathematicae

Acta Arithmetica

Integers

### An arithmetic function

Δελτίο της Ελληνικής Μαθηματικής Εταιρίας

### An average form of Artin's conjecture

Mémoires de la Société Mathématique de France

### Arithmetic progressions of primitive roots of a prime. II.

Journal für die reine und angewandte Mathematik

### Arithmetic progressions, prime numbers, and squarefree integers

Czechoslovak Mathematical Journal

In this paper we establish the distribution of prime numbers in a given arithmetic progression $p\equiv l\phantom{\rule{4.44443pt}{0ex}}\left(mod\phantom{\rule{0.277778em}{0ex}}k\right)$ for which $ap+b$ is squarefree.

### Artin's conjecture on primes with prescribed primitive roots

Séminaire Delange-Pisot-Poitou. Théorie des nombres

### Asymptotically exact heuristics for prime divisors of the sequence ${\left\{{a}^{k}+{b}^{k}\right\}}_{k=1}^{\infty }$.

Journal of Integer Sequences [electronic only]

### Average r-rank Artin conjecture

Acta Arithmetica

Let Γ ⊂ ℚ * be a finitely generated subgroup and let p be a prime such that the reduction group Γₚ is a well defined subgroup of the multiplicative group ₚ*. We prove an asymptotic formula for the average of the number of primes p ≤ x for which [ₚ*:Γₚ] = m. The average is taken over all finitely generated subgroups $\Gamma =⟨a₁,...,{a}_{r}⟩\subset ℚ*$, with ${a}_{i}\in ℤ$ and ${a}_{i}\le {T}_{i}$, with a range of uniformity ${T}_{i}>exp\left(4{\left(logxloglogx\right)}^{1/2}\right)$ for every i = 1,...,r. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar...

### Character Sums and Primitive Roots in Algebraic Number Fields.

Monatshefte für Mathematik

### Chebyshev's bias.

Experimental Mathematics

Acta Arithmetica

Integers

### Distribution of quadratic non-residues which are not primitive roots

Mathematica Bohemica

In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo ${p}^{h}$ or $2{p}^{h}$ for an odd prime $p$ and $h\ge 1$ an integer.

Acta Arithmetica

Page 1 Next