Dedekind sums with predictable signs

Kurt Girstmair

Acta Arithmetica (1998)

  • Volume: 83, Issue: 3, page 283-295
  • ISSN: 0065-1036

How to cite

top

Kurt Girstmair. "Dedekind sums with predictable signs." Acta Arithmetica 83.3 (1998): 283-295. <http://eudml.org/doc/207124>.

@article{KurtGirstmair1998,
author = {Kurt Girstmair},
journal = {Acta Arithmetica},
keywords = {Dedekind sum; subintervals; predictable sign},
language = {eng},
number = {3},
pages = {283-295},
title = {Dedekind sums with predictable signs},
url = {http://eudml.org/doc/207124},
volume = {83},
year = {1998},
}

TY - JOUR
AU - Kurt Girstmair
TI - Dedekind sums with predictable signs
JO - Acta Arithmetica
PY - 1998
VL - 83
IS - 3
SP - 283
EP - 295
LA - eng
KW - Dedekind sum; subintervals; predictable sign
UR - http://eudml.org/doc/207124
ER -

References

top
  1. [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976. 
  2. [2] R. Bruggeman, On the distribution of Dedekind sums, in: Contemp. Math. 166, Amer. Math. Soc., 1994, 197-210. Zbl0810.11025
  3. [3] R. Bruggeman, Dedekind sums for Hecke groups, Acta Arith. 71 (1995), 11-46. Zbl0818.11022
  4. [4] U. Dieter, Beziehungen zwischen Dedekindschen Summen, Abh. Math. Sem. Univ. Hamburg 21 (1957), 109-125. Zbl0078.07002
  5. [5] J. E. Pommersheim, Toric varieties, lattice points, and Dedekind sums, Math. Ann. 295 (1993), 1-24. Zbl0789.14043
  6. [6] H. Rademacher, Generalization of the reciprocity formula for Dedekind sums, Duke Math. J. 21 (1954), 391-397. Zbl0057.03801
  7. [7] H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445-463. 
  8. [8] H. Rademacher and E. Grosswald, Dedekind Sums, Carus Math. Monographs 16, Math. Assoc. Amer., 1972. 

NotesEmbed ?

top

You must be logged in to post comments.