Dedekind sums for Hecke groups

Roelof W. Bruggeman

Acta Arithmetica (1995)

  • Volume: 71, Issue: 1, page 11-46
  • ISSN: 0065-1036

How to cite

top

Roelof W. Bruggeman. "Dedekind sums for Hecke groups." Acta Arithmetica 71.1 (1995): 11-46. <http://eudml.org/doc/206757>.

@article{RoelofW1995,
author = {Roelof W. Bruggeman},
journal = {Acta Arithmetica},
keywords = {reciprocity relation; distribution result; automorphic forms; Eisenstein series; generalized Dedekind sums; Hecke groups; Poincaré series},
language = {eng},
number = {1},
pages = {11-46},
title = {Dedekind sums for Hecke groups},
url = {http://eudml.org/doc/206757},
volume = {71},
year = {1995},
}

TY - JOUR
AU - Roelof W. Bruggeman
TI - Dedekind sums for Hecke groups
JO - Acta Arithmetica
PY - 1995
VL - 71
IS - 1
SP - 11
EP - 46
LA - eng
KW - reciprocity relation; distribution result; automorphic forms; Eisenstein series; generalized Dedekind sums; Hecke groups; Poincaré series
UR - http://eudml.org/doc/206757
ER -

References

top
  1. [1] M. Atiyah, The logarithm of the Dedekind η-function, Math. Ann. 278 (1987), 335-380. Zbl0648.58035
  2. [2] R. W. Bruggeman, Modular forms of varying weight. I, Math. Z. 190 (1985), 477-495. Zbl0553.10021
  3. [3] R. W. Bruggeman, Modular forms of varying weight. II, Math. Z. 192 (1986), 297-328. Zbl0569.10011
  4. [4] R. W. Bruggeman, Modular forms of varying weight. III, J. Reine Angew. Math. 371 (1986), 144-190. Zbl0588.10021
  5. [5] R. W. Bruggeman, Eisenstein series and the distribution of Dedekind sums, Math. Z. 202 (1989), 181-198. Zbl0655.10026
  6. [6] R. W. Bruggeman, On the distribution of Dedekind sums, in: Proc. Internat. Conf. Automorphic Functions and their Applications, Khabarovsk, 1988, N. Kuznetsov and V. Bykovsky (eds.), 82-89. Zbl0742.11024
  7. [7] R. W. Bruggeman, Dedekind sums and Fourier coefficients of modular forms, J. Number Theory 36 (1990), 289-321. Zbl0723.11018
  8. [8] R. W. Bruggeman, On the distribution of Dedekind sums, in: Contemp. Math. 166, Amer. Math. Soc., 1994, 197-210. Zbl0810.11025
  9. [9] R. W. Bruggeman, Families of Automorphic Forms, Monographs Math. 88, Birkhäuser, 1994. Zbl0821.11029
  10. [10] R. Dedekind, Erläuterungen zu den Fragmenten XXVIII, in: B. Riemann, Gesammelte mathematische Werke und wissenschaftlicher Nachlass, H. Weber (ed.); reprint, Dover Publ., 1953, 466-478. 
  11. [11] L. J. Goldstein, Dedekind sums for a Fuchsian group, I, Nagoya Math. J. 50 (1973), 21-47. Zbl0267.10039
  12. [12] L. J. Goldstein, Errata for Dedekind sums for a Fuchsian group, I, Nagoya Math. J. 53 (1974), 235-237. Zbl0282.10017
  13. [13] L. J. Goldstein, Dedekind sums for a Fuchsian group, II, Nagoya Math. J. 53 (1974), 171-187. Zbl0289.10018
  14. [14] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699. Zbl0014.01601
  15. [15] E. Hecke, Dirichlet Series, Modular Functions and Quadratic Forms, lecture notes by H. Serbin, Institute of Adv. Study, Princeton, 1938. 
  16. [16] D. A. Hejhal, The Selberg Trace Formula for PSL(2,ℝ), Vol. 2, Lecture Notes in Math. 1001, Springer, 1983. 
  17. [17] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970. Zbl0211.38404
  18. [18] A. Leutbecher, Über die Heckeschen Gruppen G(λ), I, Abh. Math. Sem. Univ. Hamburg 31 (1967), 199-205. Zbl0161.27601
  19. [19] H. Maaß, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183. Zbl0033.11702
  20. [20] H. Maaß, Modular Functions of One Complex Variable, Tata Institute, Bombay, 1964; 2nd ed., Springer, 1983. Zbl0254.10018
  21. [21] R. Matthes, The Eisenstein family for the modular group along closed geodesics, Math. Z., to appear. Zbl0868.11023
  22. [22] H. Neunhöffer, Über die analytische Fortsetzung von Poincaréreihen, Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl., 2. Abhandlung, 1973, 33-90. 
  23. [23] H. Petersson, Zur analytischen Theorie der Grenzkreisgruppen, I, Math. Ann.115 (1937), 23-67. 
  24. [24] H. Rademacher and E. Grosswald, Dedekind Sums, Math. Assoc. Amer., 1972. 
  25. [25] L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960. Zbl0086.27502
  26. [26] I. Vardi, Dedekind sums have a limiting distribution, Duke Math. J. 69, Int. Math. Research Notices (1993), 1-12. Zbl0785.11028
  27. [27] D. V. Widder, The Laplace Transform, Princeton University Press, 1946. Zbl0060.24801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.