On some arithmetical properties of middle binomial coefficients

Daniel Berend; Jorgen E. Harmse

Acta Arithmetica (1998)

  • Volume: 84, Issue: 1, page 31-41
  • ISSN: 0065-1036

How to cite


Daniel Berend, and Jorgen E. Harmse. "On some arithmetical properties of middle binomial coefficients." Acta Arithmetica 84.1 (1998): 31-41. <http://eudml.org/doc/207133>.

author = {Daniel Berend, Jorgen E. Harmse},
journal = {Acta Arithmetica},
keywords = {weakly well-distributed sequences; middle binomial coefficent; congruence class},
language = {eng},
number = {1},
pages = {31-41},
title = {On some arithmetical properties of middle binomial coefficients},
url = {http://eudml.org/doc/207133},
volume = {84},
year = {1998},

AU - Daniel Berend
AU - Jorgen E. Harmse
TI - On some arithmetical properties of middle binomial coefficients
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 1
SP - 31
EP - 41
LA - eng
KW - weakly well-distributed sequences; middle binomial coefficent; congruence class
UR - http://eudml.org/doc/207133
ER -


  1. [BG] D. Barbolosi et P. J. Grabner, Distribution des coefficients multinomiaux et q-binomiaux modulo p, Indag. Math. 7 (1996), 129-135. Zbl0863.11009
  2. [E] P. Erdős, On some divisibility properties of 2 n n , Canad. Math. Bull. 7 (1964), 513-518. Zbl0125.02306
  3. [EG] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique, Imprimerie Kundig, Geneva, 1980. Zbl0434.10001
  4. P. Erdős, R. L. Graham, I. Z. Ruzsa and E. G. Straus, On the prime factors of 2 n n , Math. Comp. 29 (1975), 83-92. Zbl0296.10008
  5. [EK] P. Erdős and G. Kolesnik, Prime power divisors of binomial coefficients, preprint. Zbl0952.11002
  6. [Ga] A. Gardiner, Four problems on prime power divisibility, Amer. Math. Monthly 95 (1988), 926-931. Zbl0663.10002
  7. [GW] R. Garfield and H. S. Wilf, The distribution of the binomial coefficients modulo p, J. Number Theory 41 (1992), 1-5. Zbl0765.11008
  8. R. Graham, personal communication. 
  9. A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331. Zbl0757.05003
  10. [GR] A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107. Zbl0868.11009
  11. [Hex] E. Hexel, Einige Bemerkungen zum Pascal'schen Dreieck modulo p, in Contributions to Graph Theory and its Applications (International Colloquium Oberhof, 1977), Technische Hochschule Ilmenau, Ilmenau, 1977, 121-128. 
  12. [HS] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105. Zbl0499.10005
  13. [Hey] H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin, 1977. Zbl0376.60002
  14. [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
  15. [K] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitäts-gesetzen, J. Reine Angew. Math. 44 (1852), 93-146. 
  16. [L] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321. 
  17. [N] W. Narkiewicz, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math. 1087, Springer, Berlin, 1984. Zbl0541.10001
  18. [R] M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Springer, Berlin, 1971. 
  19. [San] J. W. Sander, Prime power divisors of 2 n n , J. Number Theory 39 (1991), 65-74. Zbl0736.11011
  20. [Sár] A. Sárközy, On divisors of binomial coefficients, I, J. Number Theory 20 (1985), 70-80. Zbl0551.10002
  21. [V] G. Velammal, Is the binomial coefficient 2 n n squarefree?, Hardy-Ramanujan J. 18 (1995), 23-45. Zbl0817.11011

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.