On some arithmetical properties of middle binomial coefficients
Daniel Berend; Jorgen E. Harmse
Acta Arithmetica (1998)
- Volume: 84, Issue: 1, page 31-41
- ISSN: 0065-1036
Access Full Article
topHow to cite
topDaniel Berend, and Jorgen E. Harmse. "On some arithmetical properties of middle binomial coefficients." Acta Arithmetica 84.1 (1998): 31-41. <http://eudml.org/doc/207133>.
@article{DanielBerend1998,
author = {Daniel Berend, Jorgen E. Harmse},
journal = {Acta Arithmetica},
keywords = {weakly well-distributed sequences; middle binomial coefficent; congruence class},
language = {eng},
number = {1},
pages = {31-41},
title = {On some arithmetical properties of middle binomial coefficients},
url = {http://eudml.org/doc/207133},
volume = {84},
year = {1998},
}
TY - JOUR
AU - Daniel Berend
AU - Jorgen E. Harmse
TI - On some arithmetical properties of middle binomial coefficients
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 1
SP - 31
EP - 41
LA - eng
KW - weakly well-distributed sequences; middle binomial coefficent; congruence class
UR - http://eudml.org/doc/207133
ER -
References
top- [BG] D. Barbolosi et P. J. Grabner, Distribution des coefficients multinomiaux et q-binomiaux modulo p, Indag. Math. 7 (1996), 129-135. Zbl0863.11009
- [E] P. Erdős, On some divisibility properties of , Canad. Math. Bull. 7 (1964), 513-518. Zbl0125.02306
- [EG] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique, Imprimerie Kundig, Geneva, 1980. Zbl0434.10001
- P. Erdős, R. L. Graham, I. Z. Ruzsa and E. G. Straus, On the prime factors of , Math. Comp. 29 (1975), 83-92. Zbl0296.10008
- [EK] P. Erdős and G. Kolesnik, Prime power divisors of binomial coefficients, preprint. Zbl0952.11002
- [Ga] A. Gardiner, Four problems on prime power divisibility, Amer. Math. Monthly 95 (1988), 926-931. Zbl0663.10002
- [GW] R. Garfield and H. S. Wilf, The distribution of the binomial coefficients modulo p, J. Number Theory 41 (1992), 1-5. Zbl0765.11008
- R. Graham, personal communication.
- A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331. Zbl0757.05003
- [GR] A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107. Zbl0868.11009
- [Hex] E. Hexel, Einige Bemerkungen zum Pascal'schen Dreieck modulo p, in Contributions to Graph Theory and its Applications (International Colloquium Oberhof, 1977), Technische Hochschule Ilmenau, Ilmenau, 1977, 121-128.
- [HS] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105. Zbl0499.10005
- [Hey] H. Heyer, Probability Measures on Locally Compact Groups, Springer, Berlin, 1977. Zbl0376.60002
- [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
- [K] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitäts-gesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
- [L] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
- [N] W. Narkiewicz, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math. 1087, Springer, Berlin, 1984. Zbl0541.10001
- [R] M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Springer, Berlin, 1971.
- [San] J. W. Sander, Prime power divisors of , J. Number Theory 39 (1991), 65-74. Zbl0736.11011
- [Sár] A. Sárközy, On divisors of binomial coefficients, I, J. Number Theory 20 (1985), 70-80. Zbl0551.10002
- [V] G. Velammal, Is the binomial coefficient squarefree?, Hardy-Ramanujan J. 18 (1995), 23-45. Zbl0817.11011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.