Page 1 Next

Displaying 1 – 20 of 114

Showing per page

A characterization of sequences with the minimum number of k-sums modulo k

Xingwu Xia, Yongke Qu, Guoyou Qian (2014)

Colloquium Mathematicae

Let G be an additive abelian group of order k, and S be a sequence over G of length k+r, where 1 ≤ r ≤ k-1. We call the sum of k terms of S a k-sum. We show that if 0 is not a k-sum, then the number of k-sums is at least r+2 except for S containing only two distinct elements, in which case the number of k-sums equals r+1. This result improves the Bollobás-Leader theorem, which states that there are at least r+1 k-sums if 0 is not a k-sum.

A note on p-adic valuations of Schenker sums

Piotr Miska (2015)

Colloquium Mathematicae

A prime number p is called a Schenker prime if there exists n ∈ ℕ₊ such that p∤n and p|aₙ, where a = j = 0 n ( n ! / j ! ) n j is a so-called Schenker sum. T. Amdeberhan, D. Callan and V. Moll formulated two conjectures concerning p-adic valuations of aₙ when p is a Schenker prime. In particular, they conjectured that for each k ∈ ℕ₊ there exists a unique positive integer n k < 5 k such that v ( a m · 5 k + n k ) k for each nonnegative integer m. We prove that for every k ∈ ℕ₊ the inequality v₅(aₙ) ≥ k has exactly one solution modulo 5 k . This confirms the...

A search for Tribonacci-Wieferich primes

Jiří Klaška (2008)

Acta Mathematica Universitatis Ostraviensis

Such problems as the search for Wieferich primes or Wall-Sun-Sun primes are intensively studied and often discused at present. This paper is devoted to a similar problem related to the Tribonacci numbers.

Currently displaying 1 – 20 of 114

Page 1 Next