Généralisation d'une famille de Shanks

Brigitte Adam

Acta Arithmetica (1998)

  • Volume: 84, Issue: 1, page 43-58
  • ISSN: 0065-1036

How to cite

top

Brigitte Adam. "Généralisation d'une famille de Shanks." Acta Arithmetica 84.1 (1998): 43-58. <http://eudml.org/doc/207134>.

@article{BrigitteAdam1998,
author = {Brigitte Adam},
journal = {Acta Arithmetica},
keywords = {family of quadratic fields of Shanks; fundamental units; continued fractions; Jacobi-Perron algorithm; Voronoi algorithm; Voronoï algorithm},
language = {fre},
number = {1},
pages = {43-58},
title = {Généralisation d'une famille de Shanks},
url = {http://eudml.org/doc/207134},
volume = {84},
year = {1998},
}

TY - JOUR
AU - Brigitte Adam
TI - Généralisation d'une famille de Shanks
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 1
SP - 43
EP - 58
LA - fre
KW - family of quadratic fields of Shanks; fundamental units; continued fractions; Jacobi-Perron algorithm; Voronoi algorithm; Voronoï algorithm
UR - http://eudml.org/doc/207134
ER -

References

top
  1. [1] B. Adam, Voronoï-algorithm expansion of two families with period length going to infinity, Math. Comp. 64 (1995), 1687-1704. Zbl0858.11070
  2. [2] L. Bernstein, The Jacobi-Perron Algorithm, its Theory and Application, Lecture Notes in Math. 207, Springer, Berlin, 1971. Zbl0213.05201
  3. [3] B. N. Delone and D. K. Faddeev, The Theory of Irrationalities of the Third Degree, Transl. Math. Monographs 10, Amer. Math. Soc., Providence, R.I., 1964. Zbl0133.30202
  4. [4] E. Dubois et A. Farhane, Unité fondamentale dans des familles d'ordres cubiques, Utilitas Math. 47 (1995), 97-115. 
  5. [5] A. Farhane, Spécialisation de points extrémaux. Application aux fractions continues et aux unités d'une famille de corps cubiques, thèse, Caen, 1992. 
  6. [6] F. Halter-Koch, Einige periodische Kettenbruchentwicklungen und Grundeinheiten quadratischer Ordnungen, Abh. Math. Sem. Univ. Hamburg 59 (1989), 157-169. 
  7. [7] C. Levesque and G. Rhin, Two families of periodic Jacobi algorithms with period lengths going to infinity, J. Number Theory 37 (1991), 173-180. Zbl0723.11032
  8. [8] R. A. Mollin and H. C. Williams, Consecutive powers in continued fractions, Acta Arith. 61 (1992), 233-264. Zbl0764.11010
  9. [9] O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann. 64 (1907), 1-76. Zbl38.0262.01
  10. [10] D. Shanks, On Gauss's class number problems, Math. Comp. 23 (1969), 151-163. Zbl0177.07103
  11. [11] G. F. Voronoï, On a generalization of the algorithm of continued fractions, Doctoral Dissertation, Warszawa, 1896 (en russe). 
  12. [12] H. C. Williams, Some generalizations of the S n sequence of Shanks, Acta Arith. 69 (1995), 199-215. Zbl0842.11004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.