Length of continued fractions in principal quadratic fields
Acta Arithmetica (1998)
- Volume: 85, Issue: 1, page 35-49
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic number fields, Ann. of Math. 56 (1952), 479-493. Zbl0049.30605
- [2] S. Chowla and S. S. Pillai, Periodic simple continued fraction, J. London Math. Soc. 6 (1931), 85-89. Zbl0001.32601
- [3] H. Cohen, Multiplication par un entier d'une fraction continue périodique, Acta Arith. 26 (1974), 129-148. Zbl0273.10031
- [4] D. A. Cox, Primes of the Form x² + ny², Wiley, 1989.
- [5] R. Descombes, Eléments de théorie des nombres, Presses Univ. France, 1986.
- [6] G. Grisel, Sur la longueur de la fraction continue de , Acta Arith. 74 (1996), 161-176.
- [7] G. Grisel, Length of the continued fraction of the powers of a rational fraction, J. Number Theory 62 (1997), 322-337. Zbl0878.11028
- [8] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994. Zbl0805.11001
- [9] M. Mendès France, The depth of a rational number, in: Topics in Number Theory (Debrecen, 1974), Colloq. Math. Soc. János Bolyai 13, North-Holland, 1976, 183-194.
- [10] L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137-144. Zbl0093.04305