Length of continued fractions in principal quadratic fields

Guillaume Grisel

Acta Arithmetica (1998)

  • Volume: 85, Issue: 1, page 35-49
  • ISSN: 0065-1036

Abstract

top
Let d ≥ 2 be a square-free integer and for all n ≥ 0, let l ( ( d ) 2 n + 1 ) be the length of the continued fraction expansion of ( d ) 2 n + 1 . If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that C ( d ) 2 n + 1 l ( ( d ) 2 n + 1 ) C ( d ) 2 n + 1 for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].

How to cite

top

Guillaume Grisel. "Length of continued fractions in principal quadratic fields." Acta Arithmetica 85.1 (1998): 35-49. <http://eudml.org/doc/207153>.

@article{GuillaumeGrisel1998,
abstract = {Let d ≥ 2 be a square-free integer and for all n ≥ 0, let $l((√d)^\{2n+1\})$ be the length of the continued fraction expansion of $(√d)^\{2n+1\}$. If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that $C₁(√d)^\{2n+1\} ≥ l((√d)^\{2n+1\}) ≥ C₂(√d)^\{2n+1\}$ for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].},
author = {Guillaume Grisel},
journal = {Acta Arithmetica},
keywords = {principal quadratic fields; length of period; continued fraction expansion},
language = {eng},
number = {1},
pages = {35-49},
title = {Length of continued fractions in principal quadratic fields},
url = {http://eudml.org/doc/207153},
volume = {85},
year = {1998},
}

TY - JOUR
AU - Guillaume Grisel
TI - Length of continued fractions in principal quadratic fields
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 1
SP - 35
EP - 49
AB - Let d ≥ 2 be a square-free integer and for all n ≥ 0, let $l((√d)^{2n+1})$ be the length of the continued fraction expansion of $(√d)^{2n+1}$. If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that $C₁(√d)^{2n+1} ≥ l((√d)^{2n+1}) ≥ C₂(√d)^{2n+1}$ for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].
LA - eng
KW - principal quadratic fields; length of period; continued fraction expansion
UR - http://eudml.org/doc/207153
ER -

References

top
  1. [1] N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic number fields, Ann. of Math. 56 (1952), 479-493. Zbl0049.30605
  2. [2] S. Chowla and S. S. Pillai, Periodic simple continued fraction, J. London Math. Soc. 6 (1931), 85-89. Zbl0001.32601
  3. [3] H. Cohen, Multiplication par un entier d'une fraction continue périodique, Acta Arith. 26 (1974), 129-148. Zbl0273.10031
  4. [4] D. A. Cox, Primes of the Form x² + ny², Wiley, 1989. 
  5. [5] R. Descombes, Eléments de théorie des nombres, Presses Univ. France, 1986. 
  6. [6] G. Grisel, Sur la longueur de la fraction continue de α n , Acta Arith. 74 (1996), 161-176. 
  7. [7] G. Grisel, Length of the continued fraction of the powers of a rational fraction, J. Number Theory 62 (1997), 322-337. Zbl0878.11028
  8. [8] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994. Zbl0805.11001
  9. [9] M. Mendès France, The depth of a rational number, in: Topics in Number Theory (Debrecen, 1974), Colloq. Math. Soc. János Bolyai 13, North-Holland, 1976, 183-194. 
  10. [10] L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137-144. Zbl0093.04305

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.