# Zero density estimates of L-functions associated with cusp forms

Acta Arithmetica (1998)

- Volume: 85, Issue: 3, page 209-227
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topYuichi Kamiya. "Zero density estimates of L-functions associated with cusp forms." Acta Arithmetica 85.3 (1998): 209-227. <http://eudml.org/doc/207164>.

@article{YuichiKamiya1998,

author = {Yuichi Kamiya},

journal = {Acta Arithmetica},

keywords = {holomorphic cusp form; Dirichlet character; primitive character; zero density estimates; approximate functional equation},

language = {eng},

number = {3},

pages = {209-227},

title = {Zero density estimates of L-functions associated with cusp forms},

url = {http://eudml.org/doc/207164},

volume = {85},

year = {1998},

}

TY - JOUR

AU - Yuichi Kamiya

TI - Zero density estimates of L-functions associated with cusp forms

JO - Acta Arithmetica

PY - 1998

VL - 85

IS - 3

SP - 209

EP - 227

LA - eng

KW - holomorphic cusp form; Dirichlet character; primitive character; zero density estimates; approximate functional equation

UR - http://eudml.org/doc/207164

ER -

## References

top- [1] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, Berlin, 1980. Zbl0453.10002
- [2] P. Deligne, La conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307.
- [3] A. Good, Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind, Comment. Math. Helv. 50 (1975), 327-361. Zbl0315.10038
- [4] A. Ivić, On zeta-functions associated with Fourier coefficients of cusp forms, in: Proceedings of the Amalfi Conference on Analytic Number Theory, E. Bombieri et al. (eds.), Università di Salerno, 1992, 231-246. Zbl0787.11035
- [5] T. Miyake, Modular Forms, Springer, Berlin, 1989.
- [6] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971. Zbl0216.03501
- [7] R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions II, Proc. Cambridge Philos. Soc. 35 (1939), 357-372. Zbl0021.39202

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.