Index for subgroups of the group of units in number fields

Tsutomu Shimada

Acta Arithmetica (1998)

  • Volume: 85, Issue: 3, page 249-263
  • ISSN: 0065-1036

Abstract

top
We define a sequence of rational integers u i ( E ) for each finite index subgroup E of the group of units in some finite Galois number fields K in which prime p ramifies. For two subgroups E’ ⊂ E of finite index in the group of units of K we prove the formula v p ( [ E : E ' ] ) = i = 1 r u i ( E ' ) - u i ( E ) . This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].

How to cite

top

Tsutomu Shimada. "Index for subgroups of the group of units in number fields." Acta Arithmetica 85.3 (1998): 249-263. <http://eudml.org/doc/207167>.

@article{TsutomuShimada1998,
abstract = {We define a sequence of rational integers $u_i(E)$ for each finite index subgroup E of the group of units in some finite Galois number fields K in which prime p ramifies. For two subgroups E’ ⊂ E of finite index in the group of units of K we prove the formula $v_p([E:E^\{\prime \}]) = ∑_\{i=1\}^r \{u_i(E^\{\prime \}) - u_i(E)\}$. This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].},
author = {Tsutomu Shimada},
journal = {Acta Arithmetica},
keywords = {cyclotomic units; -character of the Bernoulli numbers; index of subgroups; unit group of finite Galois number fields},
language = {eng},
number = {3},
pages = {249-263},
title = {Index for subgroups of the group of units in number fields},
url = {http://eudml.org/doc/207167},
volume = {85},
year = {1998},
}

TY - JOUR
AU - Tsutomu Shimada
TI - Index for subgroups of the group of units in number fields
JO - Acta Arithmetica
PY - 1998
VL - 85
IS - 3
SP - 249
EP - 263
AB - We define a sequence of rational integers $u_i(E)$ for each finite index subgroup E of the group of units in some finite Galois number fields K in which prime p ramifies. For two subgroups E’ ⊂ E of finite index in the group of units of K we prove the formula $v_p([E:E^{\prime }]) = ∑_{i=1}^r {u_i(E^{\prime }) - u_i(E)}$. This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].
LA - eng
KW - cyclotomic units; -character of the Bernoulli numbers; index of subgroups; unit group of finite Galois number fields
UR - http://eudml.org/doc/207167
ER -

References

top
  1. [1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121-124. Zbl0171.01105
  2. [2] P. Dénes, Über irreguläre Kreiskörper, Publ. Math. Debrecen 3 (1953), 17-23. 
  3. [3] P. Dénes, Über Grundeinheitssysteme der irregulären Kreiskörper von besonderen Kongruenzeigenschaften, Publ. Math. Debrecen 3 (1954), 195-204. Zbl0058.26902
  4. [4] P. Dénes, Über den zweiten Faktor der Klassenzahl und den Irregularitätsgrad der irregulären Kreiskörper, Publ. Math. Debrecen 4 (1956), 163-170. Zbl0071.26505
  5. [5] F. Kurihara, On the p-adic expansion of units of cyclotomic fields, J. Number Theory 32 (1989), 226-253. Zbl0689.12005
  6. [6] L. C. Washington, Units of irregular cyclotomic fields, Illinois J. Math. 23 (1979), 635-647. Zbl0427.12004
  7. [7] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1997. Zbl0966.11047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.