Bounds for the minimal solution of genus zero diophantine equations

Dimitrios Poulakis

Acta Arithmetica (1998)

  • Volume: 86, Issue: 1, page 51-90
  • ISSN: 0065-1036

How to cite

top

Dimitrios Poulakis. "Bounds for the minimal solution of genus zero diophantine equations." Acta Arithmetica 86.1 (1998): 51-90. <http://eudml.org/doc/207181>.

@article{DimitriosPoulakis1998,
author = {Dimitrios Poulakis},
journal = {Acta Arithmetica},
keywords = {bounds for minimal solution; genus zero curve},
language = {eng},
number = {1},
pages = {51-90},
title = {Bounds for the minimal solution of genus zero diophantine equations},
url = {http://eudml.org/doc/207181},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Dimitrios Poulakis
TI - Bounds for the minimal solution of genus zero diophantine equations
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 1
SP - 51
EP - 90
LA - eng
KW - bounds for minimal solution; genus zero curve
UR - http://eudml.org/doc/207181
ER -

References

top
  1. [1] G. A. Bliss, Algebraic Functions, Dover, New York, 1966. Zbl0141.05002
  2. [2] E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, 1986. 
  3. [3] M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic Press, New York, 1966. 
  4. [4] W. Fulton, Algebraic Curves, Benjamin, New York, 1969. Zbl0181.23901
  5. [5] R. Hartshorne, Algebraic Geometry, Springer, 1977. 
  6. [6] D. Hilbert und A. Hurwitz, Über die diophantischen Gleichungen von Geschlecht Null, Acta Math. 14 (1890), 217-224. 
  7. [7] D. L. Hilliker, An algorithm for computing the values of the ramification index in the Puiseux series expansions of an algebraic function, Pacific J. Math. 118 (1985), 427-435. Zbl0569.12009
  8. [8] L. Holzer, Minimal solutions of diophantine equations, Canad. J. Math. 2 (1950), 238-244. 
  9. [9] S. Lang, Introduction to Algebraic and Abelian Functions, Springer, 1982. Zbl0513.14024
  10. [10] S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983. Zbl0528.14013
  11. [11] M. Mignotte, An inequality on the greatest roots of a polynomial, Elem. Math. 46 (1991), 85-86. Zbl0745.12001
  12. [12] L. J. Mordell, On the magnitude of the integer solutions of the equation ax²+by²+cz²=0, J. Number Theory 1 (1969), 1-3. 
  13. [13] H. Poincaré, Sur les propriétés arithmétiques des courbes algébriques, J. Math. Pures Appl. 71 (1901), 161-233. Zbl32.0564.06
  14. [14] D. Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. 63 (1997), 145-164. Zbl0893.11010
  15. [15] D. Poulakis, Polynomial bounds for the solutions of a class of Diophantine equations, J. Number Theory 66 (1997), 271-281. 
  16. [16] S. Raghavan, Bounds for minimal solutions of diophantine equations, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1975, no. 9, 109-114. Zbl0317.10025
  17. [17] W. M. Schmidt, Eisenstein's theorem on power series expansions of algebraic functions, Acta Arith. 56 (1990), 161-179. Zbl0659.12003
  18. [18] W. M. Schmidt, Construction and estimation of bases in function fields, J. Number Theory 39 (1991), 181-224. Zbl0764.11046
  19. [19] J. G. Semple and L. Roth, Algebraic Geometry, Oxford University Press, 1949. 
  20. [20] C. L. Siegel, Normen algebraischer Zahlen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1973, no. 11, 197-215. Zbl0294.10010
  21. [21] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986. Zbl0585.14026
  22. [22] R. Walker, Algebraic Curves, Springer, 1978. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.