On the number of elements with maximal order in the multiplicative group modulo n

Shuguang Li

Acta Arithmetica (1998)

  • Volume: 86, Issue: 2, page 113-132
  • ISSN: 0065-1036

How to cite

top

Shuguang Li. "On the number of elements with maximal order in the multiplicative group modulo n." Acta Arithmetica 86.2 (1998): 113-132. <http://eudml.org/doc/207184>.

@article{ShuguangLi1998,
author = {Shuguang Li},
journal = {Acta Arithmetica},
keywords = {arithmetical functions; primitive residue classes; maximal order; distribution function},
language = {eng},
number = {2},
pages = {113-132},
title = {On the number of elements with maximal order in the multiplicative group modulo n},
url = {http://eudml.org/doc/207184},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Shuguang Li
TI - On the number of elements with maximal order in the multiplicative group modulo n
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 2
SP - 113
EP - 132
LA - eng
KW - arithmetical functions; primitive residue classes; maximal order; distribution function
UR - http://eudml.org/doc/207184
ER -

References

top
  1. [1] R. D. Carmichael, The Theory of Numbers, Wiley, New York, 1914. Zbl45.0283.10
  2. [2] P. D. T. A. Elliott, On the limiting distribution of f(p+1) for non-negative additive functions, Acta Math. 132 (1974), 53-75. Zbl0287.10046
  3. [3] P. Erdős, C. Pomerance and E. Schmutz, Carmichael's lambda function, Acta Arith. 58 (1991), 363-385. Zbl0734.11047
  4. [4] J. Galambos, Advanced Probability Theory, 2nd ed., Dekker, New York, 1995. Zbl0841.60001
  5. [5] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, New York, 1974. Zbl0298.10026
  6. [6] G. H. Hardy and B. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, London, 1960. Zbl0086.25803
  7. [7] W. J. LeVeque, Topics in Number Theory, Vol. I, Addison-Wesley, Reading, Mass., 1956. Zbl0070.03804
  8. [8] S. Li, Artin's conjecture on average for composite moduli, preprint. Zbl0972.11091
  9. [9] G. Martin, The least prime primitive root and the shifted sieve, Acta Arith. 80 (1997), 277-288. Zbl0871.11065
  10. [10] K. K. Norton, On the number of restricted prime factors of an integer I, Illinois J. Math. 20 (1976), 681-705. Zbl0329.10035
  11. [11] C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217-222. Zbl0349.10004
  12. [12] I. J. Schoenberg, On asymptotic distributions of arithmetical functions, Trans. Amer. Math. Soc. 39 (1936), 315-330. Zbl0013.39302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.