On the number of elements with maximal order in the multiplicative group modulo n

Shuguang Li

Acta Arithmetica (1998)

  • Volume: 86, Issue: 2, page 113-132
  • ISSN: 0065-1036

How to cite

top

Shuguang Li. "On the number of elements with maximal order in the multiplicative group modulo n." Acta Arithmetica 86.2 (1998): 113-132. <http://eudml.org/doc/207184>.

@article{ShuguangLi1998,
author = {Shuguang Li},
journal = {Acta Arithmetica},
keywords = {arithmetical functions; primitive residue classes; maximal order; distribution function},
language = {eng},
number = {2},
pages = {113-132},
title = {On the number of elements with maximal order in the multiplicative group modulo n},
url = {http://eudml.org/doc/207184},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Shuguang Li
TI - On the number of elements with maximal order in the multiplicative group modulo n
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 2
SP - 113
EP - 132
LA - eng
KW - arithmetical functions; primitive residue classes; maximal order; distribution function
UR - http://eudml.org/doc/207184
ER -

References

top
  1. [1] R. D. Carmichael, The Theory of Numbers, Wiley, New York, 1914. Zbl45.0283.10
  2. [2] P. D. T. A. Elliott, On the limiting distribution of f(p+1) for non-negative additive functions, Acta Math. 132 (1974), 53-75. Zbl0287.10046
  3. [3] P. Erdős, C. Pomerance and E. Schmutz, Carmichael's lambda function, Acta Arith. 58 (1991), 363-385. Zbl0734.11047
  4. [4] J. Galambos, Advanced Probability Theory, 2nd ed., Dekker, New York, 1995. Zbl0841.60001
  5. [5] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, New York, 1974. Zbl0298.10026
  6. [6] G. H. Hardy and B. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, London, 1960. Zbl0086.25803
  7. [7] W. J. LeVeque, Topics in Number Theory, Vol. I, Addison-Wesley, Reading, Mass., 1956. Zbl0070.03804
  8. [8] S. Li, Artin's conjecture on average for composite moduli, preprint. Zbl0972.11091
  9. [9] G. Martin, The least prime primitive root and the shifted sieve, Acta Arith. 80 (1997), 277-288. Zbl0871.11065
  10. [10] K. K. Norton, On the number of restricted prime factors of an integer I, Illinois J. Math. 20 (1976), 681-705. Zbl0329.10035
  11. [11] C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math. 293/294 (1977), 217-222. Zbl0349.10004
  12. [12] I. J. Schoenberg, On asymptotic distributions of arithmetical functions, Trans. Amer. Math. Soc. 39 (1936), 315-330. Zbl0013.39302

NotesEmbed ?

top

You must be logged in to post comments.