A numerical bound for small prime solutions of some ternary linear equations

Ming-Chit Liu; Tianze Wang

Acta Arithmetica (1998)

  • Volume: 86, Issue: 4, page 343-383
  • ISSN: 0065-1036

How to cite

top

Ming-Chit Liu, and Tianze Wang. "A numerical bound for small prime solutions of some ternary linear equations." Acta Arithmetica 86.4 (1998): 343-383. <http://eudml.org/doc/207201>.

@article{Ming1998,
author = {Ming-Chit Liu, Tianze Wang},
journal = {Acta Arithmetica},
keywords = {ternary linear equations; Goldbach problem; small solutions; circle method; zeros of Dirichlet -functions; zero-free region},
language = {eng},
number = {4},
pages = {343-383},
title = {A numerical bound for small prime solutions of some ternary linear equations},
url = {http://eudml.org/doc/207201},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Ming-Chit Liu
AU - Tianze Wang
TI - A numerical bound for small prime solutions of some ternary linear equations
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 4
SP - 343
EP - 383
LA - eng
KW - ternary linear equations; Goldbach problem; small solutions; circle method; zeros of Dirichlet -functions; zero-free region
UR - http://eudml.org/doc/207201
ER -

References

top
  1. [B] A. Baker, On some diophantine inequalities involving primes, J. Reine Angew. Math. 228 (1967), 166-181. Zbl0155.09202
  2. [Che] J. R. Chen, On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's L-functions (II), Sci. Sinica 22 (1979), 859-889. Zbl0417.10038
  3. [Cho] K. K. S. Choi, A numerical bound for Baker's constant - some explicit estimates for small prime solutions of linear equations, Bull. Hong Kong Math. Soc. 1 (1997), 1-19. Zbl0938.11047
  4. [CLT] K. K. Choi, M. C. Liu and K. M. Tsang, Conditional bounds for small prime solutions of linear equations, Manuscripta Math. 74 (1992), 321-340. Zbl0753.11033
  5. [D] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, 1980. Zbl0453.10002
  6. [G1] S. Graham, Applications of sieve methods, Ph.D. thesis, University of Michigan, 1977. 
  7. [G2] S. Graham, On Linnik's constant, Acta Arith. 39 (1981), 163-179. 
  8. [H-B] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. 64 (1992), 265-338. Zbl0739.11033
  9. [J] M. Jutila, On Linnik's constant, Math. Scand. 41 (1977), 45-62. Zbl0363.10026
  10. [L] Yu. V. Linnik, On the least prime in an arithmetic progression (I, II), Rec. Math. (Mat. Sb.) N. S. 15 (57) (1944), 139-178; 347-368. Zbl0063.03584
  11. [LLW] J. Y. Liu, M. C. Liu and T. Z. Wang, The number of powers of 2 in a representation of large even integers (II), Sci. China, to appear. 
  12. [Li1] M. C. Liu, A bound for prime solutions of some ternary equations, Math. Z. 188 (1985), 313-323. 
  13. [Li2] M. C. Liu, An improved bound for prime solutions of some ternary equations, ibid. 194 (1987), 573-583. 
  14. [LT1] M. C. Liu and K. M. Tsang, Small prime solutions of linear equations, in: Théorie des Nombres, J.-M. De Koninck and C. Levesque (eds.), de Gruyter, Berlin, 1989, 595-624. 
  15. [LT2] M. C. Liu and K. M. Tsang, Recent progress on a problem of A. Baker, in: Séminaire de Théorie des Nombres, Paris 1991-1992, Progr. Math. 116, Birkhäuser, 1993, 121-133. Zbl0826.11045
  16. [PP] C. D. Pan and C. B. Pan, Goldbach Conjecture (English version), Science Press, Beijing, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.