The Diophantine equation X² - db²Y⁴ = 1

Gary Walsh

Acta Arithmetica (1998)

  • Volume: 87, Issue: 2, page 179-188
  • ISSN: 0065-1036

How to cite

top

Gary Walsh. "The Diophantine equation X² - db²Y⁴ = 1." Acta Arithmetica 87.2 (1998): 179-188. <http://eudml.org/doc/207213>.

@article{GaryWalsh1998,
author = {Gary Walsh},
journal = {Acta Arithmetica},
keywords = {quartic diophantine equations; biquadratic equations},
language = {eng},
number = {2},
pages = {179-188},
title = {The Diophantine equation X² - db²Y⁴ = 1},
url = {http://eudml.org/doc/207213},
volume = {87},
year = {1998},
}

TY - JOUR
AU - Gary Walsh
TI - The Diophantine equation X² - db²Y⁴ = 1
JO - Acta Arithmetica
PY - 1998
VL - 87
IS - 2
SP - 179
EP - 188
LA - eng
KW - quartic diophantine equations; biquadratic equations
UR - http://eudml.org/doc/207213
ER -

References

top
  1. [1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444. Zbl0174.33803
  2. [2] M. A. Bennett and P. G. Walsh, The Diophantine equation b²X⁴ - dY² = 1, Proc. Amer. Math. Soc., to appear. Zbl0980.11021
  3. [3] J. H. Chen and P. M. Voutier, A complete solution of the Diophantine equation x² + 1 = dy⁴ and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71-99. Zbl0869.11025
  4. [4] J. H. E. Cohn, The Diophantine equation x⁴ - Dy² = 1, II, Acta Arith. 78 (1997), 401-403. Zbl0870.11018
  5. [5] M. Langevin, Cas d'inégalité pour le théorème de Mason et applications de la conjecture (abc), C. R. Acad. Sci. Paris Sér. I 317 (1993), 441-444. 
  6. [6] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. 31 (1930), 419-448. Zbl56.0874.04
  7. [7] W. Ljunggren, Einige Eigenschaften der Einheiten reeller quadratischer und rein-biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse unbestimmter Gleichungen vierten Grades, Skr. Norske Vid.-Akad. Oslo 1936, no. 12, 1-73. 
  8. [8] W. Ljunggren, Zur Theorie der Gleichung x² + 1 = Dy⁴, Avh. Norske Vid. Akad. Oslo 1942, no. 5, 1-26. 
  9. [9] W. Ljunggren, Über die Gleichung x⁴ - Dy² = 1, Arch. Math. Naturv. 45 (1942), no. 5, 61-70. Zbl68.0069.01
  10. [10] M. Mignotte et A. Pethő, Sur les carrés dans certaines suites de Lucas, J. Théor. Nombres Bordeaux 5 (1993), 333-341. Zbl0795.11007
  11. [11] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge Univ. Press, New York, 1986. Zbl0606.10011
  12. [12] P. G. Walsh, A note on a theorem of Ljunggren and the Diophantine equations x² - kxy² + y⁴ = 1,4, Arch. Math. (Basel), to appear. Zbl0941.11012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.