Sur les carrés dans certaines suites de Lucas

Maurice Mignotte; Attila Pethö

Journal de théorie des nombres de Bordeaux (1993)

  • Volume: 5, Issue: 2, page 333-341
  • ISSN: 1246-7405

Abstract

top
Let a be an integer 3 . If α = ( a + a 2 - 4 ) / 2 and β = ( a - a 2 - 4 ) / 2 , we consider the Lucas sequence u n = ( α n - β n ) / ( α - β ) . We prove that for a 4 , u n is neither a square, nor a double or a triple square, nor six times a square for n > 3 , except for a = 338 and n = 4 .

How to cite

top

Mignotte, Maurice, and Pethö, Attila. "Sur les carrés dans certaines suites de Lucas." Journal de théorie des nombres de Bordeaux 5.2 (1993): 333-341. <http://eudml.org/doc/93586>.

@article{Mignotte1993,
abstract = {Soit $a$ un entier $\ge 3$. Pour $\alpha = (a + \sqrt\{a^2 - 4\})/2$ et $\beta = (a - \sqrt\{a^2-4\}) / 2$, nous considérons la suite de Lucas $\it \{u\}_n = (\alpha ^n - \beta ^n) / (\alpha - \beta )$. Nous montrons que, pour $a \ge 4, \it \{u\}_n$ n’est ni un carré, ni le double, ni le triple d’un carré, ni six fois un carré pour $n &gt; 3$ sauf si $a = 338$ et $n = 4$.},
author = {Mignotte, Maurice, Pethö, Attila},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {square values; Lucas sequence},
language = {fre},
number = {2},
pages = {333-341},
publisher = {Université Bordeaux I},
title = {Sur les carrés dans certaines suites de Lucas},
url = {http://eudml.org/doc/93586},
volume = {5},
year = {1993},
}

TY - JOUR
AU - Mignotte, Maurice
AU - Pethö, Attila
TI - Sur les carrés dans certaines suites de Lucas
JO - Journal de théorie des nombres de Bordeaux
PY - 1993
PB - Université Bordeaux I
VL - 5
IS - 2
SP - 333
EP - 341
AB - Soit $a$ un entier $\ge 3$. Pour $\alpha = (a + \sqrt{a^2 - 4})/2$ et $\beta = (a - \sqrt{a^2-4}) / 2$, nous considérons la suite de Lucas $\it {u}_n = (\alpha ^n - \beta ^n) / (\alpha - \beta )$. Nous montrons que, pour $a \ge 4, \it {u}_n$ n’est ni un carré, ni le double, ni le triple d’un carré, ni six fois un carré pour $n &gt; 3$ sauf si $a = 338$ et $n = 4$.
LA - fre
KW - square values; Lucas sequence
UR - http://eudml.org/doc/93586
ER -

References

top
  1. [1] W.L. McDaniel et P. Ribenboim, Squares and double-squares in Lucas sequences, C. R. Math. Rep. Acad. Sci. Canada14 n° 2, 3 (1992), 104-108. Zbl0771.11012MR1167065
  2. [2] M. Pohst & H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, 1989. Zbl0685.12001MR1033013
  3. [3] W. Ljungreen, Zur Theorie der Gleichung x2 + 1 = Dy4, Avh. Norske Vid. Akad. Oslo, No. 5, 1, (1942). MR16375JFM68.0068.01
  4. [4] A. Baker et H. Davenport, The equations 3x2 - 2 = y2 et 8x2 - 7 = z2, Quart. J. Math. Oxford2 (1969), 129-137. Zbl0177.06802
  5. [5] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canadian J. Math.45 (1) (1993), 176-224. Zbl0774.11036MR1200327
  6. [6] M. Mignotte et M. Waldschmidt, Linear forms in two logarithms and Schneider's method, III, Annales Fac. Sci. Toulouse (1990), 43-75. Zbl0702.11044MR1425750
  7. [7] T.W. Cusik, The diophantine equation x4 - kx2 y2 + y4 = 1, Arch. Math.59 (1992), 345-347. Zbl0741.11018MR1179460

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.