Sur les carrés dans certaines suites de Lucas
Maurice Mignotte; Attila Pethö
Journal de théorie des nombres de Bordeaux (1993)
- Volume: 5, Issue: 2, page 333-341
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] W.L. McDaniel et P. Ribenboim, Squares and double-squares in Lucas sequences, C. R. Math. Rep. Acad. Sci. Canada14 n° 2, 3 (1992), 104-108. Zbl0771.11012MR1167065
- [2] M. Pohst & H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, 1989. Zbl0685.12001MR1033013
- [3] W. Ljungreen, Zur Theorie der Gleichung x2 + 1 = Dy4, Avh. Norske Vid. Akad. Oslo, No. 5, 1, (1942). MR16375JFM68.0068.01
- [4] A. Baker et H. Davenport, The equations 3x2 - 2 = y2 et 8x2 - 7 = z2, Quart. J. Math. Oxford2 (1969), 129-137. Zbl0177.06802
- [5] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canadian J. Math.45 (1) (1993), 176-224. Zbl0774.11036MR1200327
- [6] M. Mignotte et M. Waldschmidt, Linear forms in two logarithms and Schneider's method, III, Annales Fac. Sci. Toulouse (1990), 43-75. Zbl0702.11044MR1425750
- [7] T.W. Cusik, The diophantine equation x4 - kx2 y2 + y4 = 1, Arch. Math.59 (1992), 345-347. Zbl0741.11018MR1179460