Trigonal modular curves

Yuji Hasegawa; Mahoro Shimura

Acta Arithmetica (1999)

  • Volume: 88, Issue: 2, page 129-140
  • ISSN: 0065-1036

How to cite

top

Yuji Hasegawa, and Mahoro Shimura. "Trigonal modular curves." Acta Arithmetica 88.2 (1999): 129-140. <http://eudml.org/doc/207234>.

@article{YujiHasegawa1999,
author = {Yuji Hasegawa, Mahoro Shimura},
journal = {Acta Arithmetica},
keywords = {modular curve; modular form; gonality},
language = {eng},
number = {2},
pages = {129-140},
title = {Trigonal modular curves},
url = {http://eudml.org/doc/207234},
volume = {88},
year = {1999},
}

TY - JOUR
AU - Yuji Hasegawa
AU - Mahoro Shimura
TI - Trigonal modular curves
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 2
SP - 129
EP - 140
LA - eng
KW - modular curve; modular form; gonality
UR - http://eudml.org/doc/207234
ER -

References

top
  1. [1] E. Arbarello et al., Geometry of Algebraic Curves, Vol. I, Grundlehren Math. Wiss. 267, Springer, 1985. 
  2. [2] A. O. L. Atkin and J. Lehner, Hecke operators on Γ₀(m), Math. Ann. 185 (1970), 134-160. 
  3. [3] A. O. L. Atkin and D. J. Tingley, Numerical tables on elliptic curves, in: Modular Functions of One Variable IV, B. Birch and W. Kuyk (eds.), Lecture Notes in Math. 476, Springer, 1975, 74-144. 
  4. [4] M. Furumoto and Y. Hasegawa, Hyperelliptic quotients of modular curves X₀(N), Tokyo J. Math., to appear. Zbl0947.11019
  5. [5] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, 1977. 
  6. [6] H. Hijikata, Explicit formula of the traces of Hecke operators for Γ₀(N), J. Math. Soc. Japan 26 (1974), 56-82. Zbl0266.12009
  7. [7] J. Igusa, Kroneckerian model of fields of elliptic modular functions, Amer. J. Math. 81 (1959), 561-577. Zbl0093.04502
  8. [8] S. L. Kleiman and D. Laksov, Another proof of the existence of special divisors, Acta Math. 132 (1974), 163-176. Zbl0286.14005
  9. [9] F. Momose, p-torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 96 (1984), 139-165. Zbl0578.14021
  10. [10] F. Momose and S. Yamada, Another estimate of the level of d-gonal modular curves, preprint. 
  11. [11] M. Newman, Conjugacy, genus, and class number, Math. Ann. 196 (1972), 198-217. Zbl0221.10030
  12. [12] K. V. Nguyen and M.-H. Saito, D-gonality of modular curves and bounding torsions, preprint. 
  13. [13] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462. Zbl0314.10018
  14. [14] B. Saint-Donat, On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157-175. 
  15. [15] J. P. Serre, Local Fields, Grad. Texts in Math. 67, Springer, 1979. 
  16. [16] M. Shimura, Defining equations of modular curves X₀(N), Tokyo J. Math. 18 (1995), 443-456. Zbl0865.11052
  17. [17] P. G. Zograf, Small eigenvalues of automorphic Laplacians in spaces of cusp forms, in: Automorphic Functions and Number Theory, II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 157-168 (in Russian). Zbl0536.10018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.