Concordant sequences and integral-valued entire functions

Jonathan Pila; Fernando Rodriguez Villegas

Acta Arithmetica (1999)

  • Volume: 88, Issue: 3, page 239-268
  • ISSN: 0065-1036

Abstract

top
A classic theorem of Pólya shows that the function 2 z is the “smallest” integral-valued entire transcendental function. A variant due to Gel’fond applies to entire functions taking integral values on a geometric progression of integers, and Bézivin has given a generalization of both results. We give a sharp formulation of Bézivin’s result together with a further generalization.

How to cite

top

Jonathan Pila, and Fernando Rodriguez Villegas. "Concordant sequences and integral-valued entire functions." Acta Arithmetica 88.3 (1999): 239-268. <http://eudml.org/doc/207245>.

@article{JonathanPila1999,
abstract = {A classic theorem of Pólya shows that the function $2^z$ is the “smallest” integral-valued entire transcendental function. A variant due to Gel’fond applies to entire functions taking integral values on a geometric progression of integers, and Bézivin has given a generalization of both results. We give a sharp formulation of Bézivin’s result together with a further generalization.},
author = {Jonathan Pila, Fernando Rodriguez Villegas},
journal = {Acta Arithmetica},
keywords = {concordant sequences; entire functions; diffuse sequences},
language = {eng},
number = {3},
pages = {239-268},
title = {Concordant sequences and integral-valued entire functions},
url = {http://eudml.org/doc/207245},
volume = {88},
year = {1999},
}

TY - JOUR
AU - Jonathan Pila
AU - Fernando Rodriguez Villegas
TI - Concordant sequences and integral-valued entire functions
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 3
SP - 239
EP - 268
AB - A classic theorem of Pólya shows that the function $2^z$ is the “smallest” integral-valued entire transcendental function. A variant due to Gel’fond applies to entire functions taking integral values on a geometric progression of integers, and Bézivin has given a generalization of both results. We give a sharp formulation of Bézivin’s result together with a further generalization.
LA - eng
KW - concordant sequences; entire functions; diffuse sequences
UR - http://eudml.org/doc/207245
ER -

References

top
  1. [1] J.-P. Bézivin, Itération de polynômes et fonctions entières arithmétiques, Acta Arith. 68 (1994), 11-25. MR 95k:30057. 
  2. [2] J.-P. Bézivin, Suites d'entiers et fonctions entières arithmétiques, Ann. Fac. Sci. Toulouse Math. 3 (1994), 313-334. MR 96a:11098. 
  3. [3] R. P. Boas, Comments on [15], in: George Pólya: Collected Papers, Vol. 1, R. P. Boas (ed.), M.I.T. Press, Cambridge, 1974, 771-773. 
  4. [4] N. Bourbaki, Commutative Algebra, Hermann, Paris, 1972. 
  5. [5] R. C. Buck, Integral valued entire functions, Duke Math. J. 15 (1948), 879-891. Zbl0033.36402
  6. [6] P. Bundschuh, A theorem of Gelfond via Schneider's method, in: New Trends in Probability and Statistics, F. Schweiger and E. Mantavicius (eds.), VSP, Utrecht, 1992, 9-15. Zbl0774.11033
  7. [7] K. Ford, personal communication of 3 April 1998. 
  8. [8] A. O. Gel’fond, Sur les fonctions entières, qui prennent des valeurs entières dans les points β n , β est un nombre entier positif et n = 1,2,3,..., Mat. Sb. 40 (1933), 42-47 (in Russian; French summary). Zbl0007.12102
  9. [9] A. O. Gel'fond, Calculus of Finite Differences, authorised English translation of the third Russian edition, Hindustan Publishing Corporation, Delhi, 1971. 
  10. [10] R. R. Hall, On pseudopolynomials, Mathematika 8 (1971), 71-77. 
  11. [11] G. H. Hardy, On a theorem of Mr. G. Pólya, Proc. Cambridge Philos. Soc. 19 (1917), 60-63. 
  12. [12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1979. Zbl0423.10001
  13. [13] A. Perelli and U. Zannier, On recurrent mod p sequences, J. Reine Angew. Math. 348 (1984), 135-146. Math. Rev. 85g:11012. Zbl0517.10006
  14. [14] C. Pisot, Über ganzwertige ganze Funktionen, Jahresber. Deutsch. Math.-Verein. 52 (1942), 95-102. Math. Rev. 4, p. 270. Zbl68.0162.02
  15. [15] G. Pólya, Ueber ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1-16. Also in: Collected Papers, Vol. 1, R. P. Boas (ed.), M.I.T. Press, Cambridge, 1974, 1-16. Zbl45.0655.02
  16. [16] G. Pólya, Über ganze ganzwertige Funktionen, Nachr. Ges. Wiss. Göttingen 1920, 1-10. Also in: Collected Papers, Vol. 1, 131-140. Zbl47.0299.02
  17. [17] R. M. Robinson, Integer-valued entire functions, Trans. Amer. Math. Soc. 153 (1971), 451-468. Zbl0212.42201
  18. [18] A. Selberg, Über ganzwertige ganze transzendente Funktionen, Archiv for Math. og Naturvidenskab B. 44 (1941), 45-52. Also in: Collected Papers, Vol. 1, Springer, Berlin, 1989, 54-61. 
  19. [19] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1939. Zbl0022.14602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.