Page 1 Next

Displaying 1 – 20 of 73

Showing per page

A rigidity phenomenon for the Hardy-Littlewood maximal function

Stefan Steinerberger (2015)

Studia Mathematica

The Hardy-Littlewood maximal function ℳ and the trigonometric function sin x are two central objects in harmonic analysis. We prove that ℳ characterizes sin x in the following way: Let f C α ( , ) be a periodic function and α > 1/2. If there exists a real number 0 < γ < ∞ such that the averaging operator ( A x f ) ( r ) = 1 / 2 r x - r x + r f ( z ) d z has a critical point at r = γ for every x ∈ ℝ, then f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ. This statement can be used to derive a characterization of trigonometric functions as those nonconstant...

Concordant sequences and integral-valued entire functions

Jonathan Pila, Fernando Rodriguez Villegas (1999)

Acta Arithmetica

A classic theorem of Pólya shows that the function 2 z is the “smallest” integral-valued entire transcendental function. A variant due to Gel’fond applies to entire functions taking integral values on a geometric progression of integers, and Bézivin has given a generalization of both results. We give a sharp formulation of Bézivin’s result together with a further generalization.

Currently displaying 1 – 20 of 73

Page 1 Next