Conditions under which is not generated by Dennis-Stein symbols
Acta Arithmetica (1999)
- Volume: 89, Issue: 2, page 189-199
- ISSN: 0065-1036
Access Full Article
topHow to cite
topKevin Hutchinson. "Conditions under which $K₂(_F)$ is not generated by Dennis-Stein symbols." Acta Arithmetica 89.2 (1999): 189-199. <http://eudml.org/doc/207263>.
@article{KevinHutchinson1999,
author = {Kevin Hutchinson},
journal = {Acta Arithmetica},
keywords = {Steinberg group; Steinberg symbol; Dennis-Stein symbol; biquadratic field},
language = {eng},
number = {2},
pages = {189-199},
title = {Conditions under which $K₂(_F)$ is not generated by Dennis-Stein symbols},
url = {http://eudml.org/doc/207263},
volume = {89},
year = {1999},
}
TY - JOUR
AU - Kevin Hutchinson
TI - Conditions under which $K₂(_F)$ is not generated by Dennis-Stein symbols
JO - Acta Arithmetica
PY - 1999
VL - 89
IS - 2
SP - 189
EP - 199
LA - eng
KW - Steinberg group; Steinberg symbol; Dennis-Stein symbol; biquadratic field
UR - http://eudml.org/doc/207263
ER -
References
top- [1] R. K. Dennis and M. R. Stein, The functor K₂: a survey of computations and problems, in: Lecture Notes in Math. 342, Springer, 1973, 243-280.
- [2] R. K. Dennis and M. R. Stein, K₂ of radical ideals and semi-local rings revisited, in: Lecture Notes in Math. 342, Springer, 1973, 281-303.
- [3] M. Geijsberts, On the generation of the tame kernel by Dennis-Stein symbols, J. Number Theory 50 (1995), 167-179. Zbl0822.11080
- [4] J. Hurrelbrink, On K₂() and presentations of in the real quadratic case, J. Reine Angew. Math. 319 (1980), 213-220. Zbl0431.20038
- [5] J. Hurrelbrink, On the size of certain K-groups, Comm. Algebra 10 (1982), 1873-1889. Zbl0502.12010
- [6] F. Keune, On the structure of the K₂ of the ring of integers of a number field, K-Theory 2 (1989), 625-645. Zbl0705.19007
- [7] J. Milnor, Introduction to Algebraic K-Theory, Ann. of Math. Stud. 72, Princeton Univ. Press, 1971. Zbl0237.18005
- [8] T. Mulders, Generating the tame and wild kernels by Dennis-Stein symbols, K-Theory 5 (1992), 449-470. Zbl0761.11040
- [9] T. Mulders, On a map from K₀ to K₂, Ph.D. thesis, Katholiecke Universiteit Nijmegen, 1992.
- [10] J. Neukirch, Class Field Theory, Springer, Berlin, 1986. Zbl0587.12001
- [11] A. A. Suslin, Torsion in K₂ of fields, K-Theory 1 (1987), 5-29. Zbl0635.12015
- [12] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274. Zbl0359.12011
- [13] W. van der Kallen, Stability for K₂ of Dedekind rings of arithmetic type, in: Lecture Notes in Math. 854, Springer, 1981, 217-248.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.