2-extensions of ℚ with trivial 2-primary Hilbert kernel
Page 1 Next
Mikaël Lescop (2004)
Acta Arithmetica
Marius Somodi (2006)
Acta Arithmetica
Fernando Pablos Romo (2007)
Publicacions Matemàtiques
The aim of this note is to offer a summary of the definitions and properties of arithmetic symbols on the linear group Gl(n, F) -F being an arbitrary discrete valuation field- and to show that the natural generalizations of the Parshin symbol on an algebraic surface S to the linear group Gl(n, ΣS) do not allow us to define new 2-dimensional symbols on S.[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].
John Tate, Shmuel Rosset (1983)
Commentarii mathematici Helvetici
Francisco José Plaza Martín (2010)
Collectanea Mathematica
Alfred Czogała, Mieczysław Kula (2014)
Acta Arithmetica
We construct an uncountable set of strong automorphisms of the Witt ring of a global field.
François Brunault (2008)
Acta Arithmetica
Kevin Hutchinson (1999)
Acta Arithmetica
Qin Yue (2001)
Acta Arithmetica
Zinov'ev, A.N. (2005)
Journal of Mathematical Sciences (New York)
Kevin Hutchinson, Dermot Ryan (2004)
Acta Arithmetica
Carlos Contou-Carrère (2013)
Rendiconti del Seminario Matematico della Università di Padova
Xuejun Guo (2009)
Acta Arithmetica
Kejian Xu, Chaochao Sun, Shanjie Chi (2014)
Acta Arithmetica
If l is a prime number, the cyclotomic elements in the l-torsion of K₂(k(x)), where k(x) is the rational function field over k, are investigated. As a consequence, a conjecture of Browkin is partially confirmed.
Kejian Xu (2007)
Acta Arithmetica
Haiyan Zhou (2010)
Acta Arithmetica
Masato Kurihara (2004)
Journal de Théorie des Nombres de Bordeaux
For a typical example of a complete discrete valuation field of type II in the sense of [12], we determine the graded quotients for all . In the Appendix, we describe the Milnor -groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.
Ehud de Shalit (1995)
Inventiones mathematicae
Richard M. Hain, Yang Jun (1996)
Mathematische Annalen
John Tate (1976)
Inventiones mathematicae
Page 1 Next