Effective version of Tartakowsky's Theorem
Acta Arithmetica (1999)
- Volume: 89, Issue: 3, page 235-253
- ISSN: 0065-1036
Access Full Article
topHow to cite
topJ. S. Hsia, and M. I. Icaza. "Effective version of Tartakowsky's Theorem." Acta Arithmetica 89.3 (1999): 235-253. <http://eudml.org/doc/207267>.
@article{J1999,
author = {J. S. Hsia, M. I. Icaza},
journal = {Acta Arithmetica},
keywords = {-adic representations; representation of integers; integral quadratic forms; JFM 56.0882.04; integral quadratic lattices; ring of integers},
language = {eng},
number = {3},
pages = {235-253},
title = {Effective version of Tartakowsky's Theorem},
url = {http://eudml.org/doc/207267},
volume = {89},
year = {1999},
}
TY - JOUR
AU - J. S. Hsia
AU - M. I. Icaza
TI - Effective version of Tartakowsky's Theorem
JO - Acta Arithmetica
PY - 1999
VL - 89
IS - 3
SP - 235
EP - 253
LA - eng
KW - -adic representations; representation of integers; integral quadratic forms; JFM 56.0882.04; integral quadratic lattices; ring of integers
UR - http://eudml.org/doc/207267
ER -
References
top- [BI] R. Baeza and M. I. Icaza, Decomposition of positive definite integral quadratic forms as sums of positive definite quadratic forms, in: Proc. Sympos. Pure Math. 58, Amer. Math. Soc., 1995, 63-72. Zbl0820.11024
- [BH] J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), 337-342. Zbl0532.10012
- [C] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, 1978. Zbl0395.10029
- [HKK] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations by positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141. Zbl0374.10013
- [Hu] P. Humbert, Réduction de formes quadratiques dans un corps algébrique fini, Comment. Math. Helv. 23 (1949), 50-63. Zbl0034.31102
- [Ki1] Y. Kitaoka, Siegel Modular Forms and Representation by Quadratic Forms, Tata Lecture Notes, Springer, 1986. Zbl0596.10020
- [Ki2] Y. Kitaoka, A note on representation of positive definite binary quadratic forms by positive definite quadratic forms in 6 variables, Acta Arith. 54 (1990), 317-322. Zbl0705.11018
- [Ki3] Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Univ. Press, 1993.
- [Kn] M. Kneser, Quadratische Formen, Göttingen Lecture Notes, 1973/74.
- [N] G. L. Nipp, Quaternary Quadratic Forms - Computer Generated Tables, Springer, 1991. Zbl0727.11018
- [OM1] O. T. O'Meara, The integral representations of quadratic forms over local rings, Amer. J. Math. 86 (1958), 843-878.
- [OM2] O. T. O'Meara, Introduction to Quadratic Forms, Springer, 1973.
- [T] W. Tartakowsky, Die Gesamtheit der Zahlen, die durch eine positive quadratische Form (s ≥ 4) darstellbar sind, Izv. Akad. Nauk SSSR 7 (1929), 111-122, 165-195. Zbl56.0882.04
- [W] G. L. Watson, Quadratic diophantine equations, Philos. Trans. Roy. Soc. London Ser. A 253 (1960), 227-254. Zbl0102.28102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.