A note on basic Iwasawa λ-invariants of imaginary quadratic fields and congruence of modular forms

Dongho Byeon

Acta Arithmetica (1999)

  • Volume: 89, Issue: 3, page 295-299
  • ISSN: 0065-1036

How to cite

top

Dongho Byeon. "A note on basic Iwasawa λ-invariants of imaginary quadratic fields and congruence of modular forms." Acta Arithmetica 89.3 (1999): 295-299. <http://eudml.org/doc/207272>.

@article{DonghoByeon1999,
author = {Dongho Byeon},
journal = {Acta Arithmetica},
keywords = {Iwasawa invariant; imaginary quadratic field; modular forms},
language = {eng},
number = {3},
pages = {295-299},
title = {A note on basic Iwasawa λ-invariants of imaginary quadratic fields and congruence of modular forms},
url = {http://eudml.org/doc/207272},
volume = {89},
year = {1999},
}

TY - JOUR
AU - Dongho Byeon
TI - A note on basic Iwasawa λ-invariants of imaginary quadratic fields and congruence of modular forms
JO - Acta Arithmetica
PY - 1999
VL - 89
IS - 3
SP - 295
EP - 299
LA - eng
KW - Iwasawa invariant; imaginary quadratic field; modular forms
UR - http://eudml.org/doc/207272
ER -

References

top
  1. [1] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, New York, 1995. 
  2. [2] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420. Zbl0212.08101
  3. [3] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory 6 (1974), 276-278. Zbl0317.12003
  4. [4] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38. 
  5. [5] K. Horie and Y. Onishi, The existence of certain infinite families of imaginary quadratic fields, J. Reine Angew. Math. 390 (1988), 97-113. Zbl0638.12001
  6. [6] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258. Zbl0074.03002
  7. [7] W. Kohnen and K. Ono, Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication, Invent. Math. 135 (1999), 387-398. Zbl0931.11044
  8. [8] J. Nakagawa and K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24. Zbl0663.14023
  9. [9] K. Ono, Indivisibility of class numbers of real quadratic fields, Compositio Math., to appear. Zbl1002.11080
  10. [10] G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481. Zbl0266.10022
  11. [11] J. Sturm, On the congruence of modular forms, in: Lecture Notes in Math. 1240, Springer, 1984, 275-280. 
  12. [12] H. Taya, Iwasawa invariants and class numbers of quadratic fields for the prime 3, Proc. Amer. Math. Soc., to appear. Zbl0958.11069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.