Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1
Acta Arithmetica (1999)
- Volume: 89, Issue: 4, page 301-309
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. G. van der Corput et J. F. Koksma, Sur l'ordre de grandeur de la fonction ζ(s) de Riemann dans la bande critique, Ann. Fac. Sci. Univ. Toulouse (3) 22 (1930), 1-39. Zbl56.0978.03
- [2] W. J. Ellison et M. Mendès-France, Les nombres premiers, Hermann, Paris, 1975.
- [3] D. R. Heath-Brown, private correspondence, 1992.
- [4] A. Ivić, The Riemann Zeta Function, Wiley, 1985.
- [5] M. Kulas, Some effective estimation in the theory of the Hurwitz-zeta function, Funct. Approx. Comment. Math. 23 (1994), 123-134. Zbl0845.11033
- [6] E. I. Panteleeva, On a problem of Dirichlet divisors in number fields, Mat. Zametki 44 (1988), 494-505 (in Russian). Zbl0654.10041
- [7] E. I. Panteleeva, On mean values of some arithmetical functions, Mat. Zametki 55 (1994), no. 2, 109-117 (in Russian).
- [8] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.
- [9] H. E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97-101. Zbl0161.04802
- [10] W. Staś, Über das Verhalten der Riemannschen ζ-Funktion und einiger verwandter Funktionen, in der Nähe der Geraden σ = 1, Acta Arith. 7 (1962), 217-224. Zbl0099.26804
- [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1986. Zbl0601.10026
- [12] P. Turán, On some recent results in the analytical theory of numbers, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 339-347.
- [13] O. V. Tyrina, A new estimate for a trigonometric integral of I. M. Vinogradov, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 363-378 (in Russian). Zbl0618.10035
- [14] I. M. Vinogradov, General theorems on the upper bound of the modulus of a trigonometric sum, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 109-130 (in Russian). Zbl0042.04205