Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1

Mieczysław Kulas

Acta Arithmetica (1999)

  • Volume: 89, Issue: 4, page 301-309
  • ISSN: 0065-1036

Abstract

top
The well-known estimate of the order of the Hurwitz zeta function      ζ ( s , α ) - α - s t c ( 1 - σ ) 3 / 2 l o g 2 / 3 t 0.    The improvement of the constant c is a consequence of some technical modifications in the method of estimating exponential sums sketched by Heath-Brown ([11], p. 136).

How to cite

top

Mieczysław Kulas. "Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1." Acta Arithmetica 89.4 (1999): 301-309. <http://eudml.org/doc/207273>.

@article{MieczysławKulas1999,
abstract = {The well-known estimate of the order of the Hurwitz zeta function      $ζ(s,α) - α^\{-s\} ≪ t^\{c(1-σ)^\{3/2\}\} log^\{2/3\}t$ 0.    The improvement of the constant c is a consequence of some technical modifications in the method of estimating exponential sums sketched by Heath-Brown ([11], p. 136).},
author = {Mieczysław Kulas},
journal = {Acta Arithmetica},
keywords = {Hurwitz zeta-function},
language = {eng},
number = {4},
pages = {301-309},
title = {Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1},
url = {http://eudml.org/doc/207273},
volume = {89},
year = {1999},
}

TY - JOUR
AU - Mieczysław Kulas
TI - Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line σ = 1
JO - Acta Arithmetica
PY - 1999
VL - 89
IS - 4
SP - 301
EP - 309
AB - The well-known estimate of the order of the Hurwitz zeta function      $ζ(s,α) - α^{-s} ≪ t^{c(1-σ)^{3/2}} log^{2/3}t$ 0.    The improvement of the constant c is a consequence of some technical modifications in the method of estimating exponential sums sketched by Heath-Brown ([11], p. 136).
LA - eng
KW - Hurwitz zeta-function
UR - http://eudml.org/doc/207273
ER -

References

top
  1. [1] J. G. van der Corput et J. F. Koksma, Sur l'ordre de grandeur de la fonction ζ(s) de Riemann dans la bande critique, Ann. Fac. Sci. Univ. Toulouse (3) 22 (1930), 1-39. Zbl56.0978.03
  2. [2] W. J. Ellison et M. Mendès-France, Les nombres premiers, Hermann, Paris, 1975. 
  3. [3] D. R. Heath-Brown, private correspondence, 1992. 
  4. [4] A. Ivić, The Riemann Zeta Function, Wiley, 1985. 
  5. [5] M. Kulas, Some effective estimation in the theory of the Hurwitz-zeta function, Funct. Approx. Comment. Math. 23 (1994), 123-134. Zbl0845.11033
  6. [6] E. I. Panteleeva, On a problem of Dirichlet divisors in number fields, Mat. Zametki 44 (1988), 494-505 (in Russian). Zbl0654.10041
  7. [7] E. I. Panteleeva, On mean values of some arithmetical functions, Mat. Zametki 55 (1994), no. 2, 109-117 (in Russian). 
  8. [8] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957. 
  9. [9] H. E. Richert, Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1, Math. Ann. 169 (1967), 97-101. Zbl0161.04802
  10. [10] W. Staś, Über das Verhalten der Riemannschen ζ-Funktion und einiger verwandter Funktionen, in der Nähe der Geraden σ = 1, Acta Arith. 7 (1962), 217-224. Zbl0099.26804
  11. [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1986. Zbl0601.10026
  12. [12] P. Turán, On some recent results in the analytical theory of numbers, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 339-347. 
  13. [13] O. V. Tyrina, A new estimate for a trigonometric integral of I. M. Vinogradov, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 363-378 (in Russian). Zbl0618.10035
  14. [14] I. M. Vinogradov, General theorems on the upper bound of the modulus of a trigonometric sum, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 109-130 (in Russian). Zbl0042.04205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.