Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations

Nobuhiro Terai

Acta Arithmetica (1999)

  • Volume: 90, Issue: 1, page 17-35
  • ISSN: 0065-1036

How to cite

top

Nobuhiro Terai. "Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations." Acta Arithmetica 90.1 (1999): 17-35. <http://eudml.org/doc/207311>.

@article{NobuhiroTerai1999,
author = {Nobuhiro Terai},
journal = {Acta Arithmetica},
keywords = {exponential diophantine equations; linear forms in two logarithms; Baker's theory},
language = {eng},
number = {1},
pages = {17-35},
title = {Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations},
url = {http://eudml.org/doc/207311},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Nobuhiro Terai
TI - Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 1
SP - 17
EP - 35
LA - eng
KW - exponential diophantine equations; linear forms in two logarithms; Baker's theory
UR - http://eudml.org/doc/207311
ER -

References

top
  1. [BS] J. Browkin and A. Schinzel, On the equation 2 n - D = y 2 , Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 311-318. Zbl0095.26204
  2. [B1] E. Brown, Diophantine equations of the form x 2 + D = y n , J. Reine Angew. Math. 274/275 (1975), 385-389. 
  3. [B2] E. Brown, Diophantine equations of the form a x 2 + D b 2 = y n , ibid. 291 (1977), 118-127. 
  4. [BG] Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273-292. Zbl0861.11024
  5. [Cao] Z. F. Cao, A note on the diophantine equation a x + b y = c z , Acta Arith., to appear. 
  6. [Ca] J. W. S. Cassels, On the equation a x - b y = 1 , Amer. J. Math. 75 (1953), 159-162. Zbl0050.03703
  7. [Co1] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166. Zbl0136.02806
  8. [Co2] J. H. E. Cohn, The diophantine equation x 2 + 2 k = y n , Arch. Math. (Basel) 59 (1992), 341-344. Zbl0770.11019
  9. [Co3] J. H. E. Cohn, The diophantine equation x 2 + C = y n , Acta Arith. 65 (1993), 367-381. 
  10. [GL] Y.-D. Guo and M.-H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Comment. Math. Univ. St. Pauli 44 (1995), 225-228. Zbl0849.11036
  11. [G] R. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994. Zbl0805.11001
  12. [J] L. Jeśmanowicz, Some remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/1956), 196-202 (in Polish). Zbl0074.27205
  13. [LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321. 
  14. [Le] M.-H. Le, On Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A 72 (1996), 97-98. Zbl0876.11013
  15. [Lv] W. J. LeVeque, On the equation a x - b y = 1 , Amer. J. Math. 74 (1952), 235-331. 
  16. [M] M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko, Acta Arith. 86 (1998), 101-111. Zbl0919.11051
  17. [MW] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse Math. 97 (1989), 43-75. Zbl0702.11044
  18. [N1] T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk. Mat. Forenings Skrigter 13 (1923), 65-82. 
  19. [N2] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153-159. Zbl0055.03608
  20. [N3] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. Ser. IV (2) 16 (1955), 1-38. 
  21. [N4] T. Nagell, Sur une classe d'équations exponentielles, Ark. Mat. 3 (1958), 569-582. Zbl0083.03902
  22. [P1] S. S. Pillai, On the inequality 0 < a x - b y n , J. Indian Math. Soc. (1) 19 (1931), 1-11. 
  23. [P2] S. S. Pillai, On a x - b y = c , J. Indian Math. Soc. (2) 2 (1936), 19-122; Corr. J. Indian Math. Soc., 2, 215. 
  24. [Ra] S. Rabinowitz, On Mordell’s equation y 2 + k = x 3 with k = ± 2 n 3 m , Doctoral dissertation at the City University of New York, 1971. 
  25. [Ri] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979. Zbl0456.10006
  26. [Sc] R. Scott, On the equations p x - b y = c and a x + b y = c z , J. Number Theory 44 (1993), 153-165. 
  27. [Si] W. Sierpi/nski, On the equation 3 x + 4 y = 5 z , Wiadom. Mat. 1 (1955/1956), 194-195 (in Polish). 
  28. [Ta] K. Takakuwa, A remark on Jeśmanowicz' conjecture, Proc. Japan Acad. Ser. A 72 (1996), 109-110. Zbl0863.11025
  29. [Te1] N. Terai, The Diophantine equation x 2 + q m = p n , Acta Arith. 63 (1993), 351-358. 
  30. [Te2] N. Terai, The Diophantine equation a x + b y = c z , Proc. Japan Acad. Ser. A 70 (1994), 22-26. Zbl0812.11024
  31. [Te3] N. Terai, The Diophantine equation a x + b y = c z II, ibid. 71 (1995), 109-110. 
  32. [Te4] N. Terai, The Diophantine equation a x + b y = c z III, ibid. 72 (1996), 20-22. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.