Bounds for the solutions of Thue-Mahler equations and norm form equations
Acta Arithmetica (1996)
- Volume: 74, Issue: 3, page 273-292
- ISSN: 0065-1036
Access Full Article
topHow to cite
topYann Bugeaud, and Kálmán Győry. "Bounds for the solutions of Thue-Mahler equations and norm form equations." Acta Arithmetica 74.3 (1996): 273-292. <http://eudml.org/doc/206853>.
@article{YannBugeaud1996,
author = {Yann Bugeaud, Kálmán Győry},
journal = {Acta Arithmetica},
keywords = {linear forms with algebraic coefficients; explicit bounds; Thue equations; binary form of degree ; norm form diophantine equations; Thue-Mahler equations},
language = {eng},
number = {3},
pages = {273-292},
title = {Bounds for the solutions of Thue-Mahler equations and norm form equations},
url = {http://eudml.org/doc/206853},
volume = {74},
year = {1996},
}
TY - JOUR
AU - Yann Bugeaud
AU - Kálmán Győry
TI - Bounds for the solutions of Thue-Mahler equations and norm form equations
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 3
SP - 273
EP - 292
LA - eng
KW - linear forms with algebraic coefficients; explicit bounds; Thue equations; binary form of degree ; norm form diophantine equations; Thue-Mahler equations
UR - http://eudml.org/doc/206853
ER -
References
top- [1] A. Baker, Transcendental Number Theory, 2nd ed., Cambridge University Press, 1979. Zbl0497.10023
- [2] E. Bombieri, Effective diophantine approximation on Gₘ, Ann. Scuola Norm. Sup. Pisa (IV) 20 (1993), 61-89. Zbl0774.11034
- [3] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), 67-80. Zbl0861.11023
- [4] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 175-202.
- [5] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174. Zbl0658.10023
- [6] N. I. Feldman, An effective refinement of the exponent in Liouville's theorem, Izv. Akad. Nauk SSSR 35 (1971), 973-990 (in Russian).
- [7] I. Gaál, Norm form equations with several dominating variables and explicit lower bounds for inhomogeneous linear forms with algebraic coefficients II, Studia Sci. Math. Hungar. 20 (1985), 333-344. Zbl0625.10012
- [8] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné II, Publ. Math. Debrecen 21 (1974), 125-144. Zbl0303.12001
- [9] K. Győry, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. A Math. 5 (1980), 3-12. Zbl0402.10018
- [10] K. Győry, Explicit lower bounds for linear forms with algebraic coefficients, Arch. Math. (Basel) 35 (1980), 438-446. Zbl0437.10014
- [11] K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Appl. Math. 56, Queen's University, Kingston, 1980. Zbl0455.10011
- [12] K. Győry, On the representation of integers by decomposable forms in several variables, Publ. Math. Debrecen 28 (1981), 89-98. Zbl0477.10022
- [13] K. Győry, On S-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math. Hungar. 16 (1981), 149-161. Zbl0518.10019
- [14] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics to the Memory of Paul Turán, Akadémiai Kiadó, Budapest, and Birkhäuser, Basel, 1983, 245-257. Zbl0518.10020
- [15] L. Hajdu, A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42 (1993), 239-246. Zbl0798.11051
- [16] S. V. Kotov, Effective bound for a linear form with algebraic coefficients in the archimedean and p-adic metrics, Inst. Math. Akad. Nauk BSSR, Preprint No. 24, Minsk, 1981 (in Russian).
- [17] S. V. Kotov and V. G. Sprindžuk, The Thue-Mahler equation in relative fields and approximation of algebraic numbers by algebraic numbers, Izv. Akad. Nauk SSSR 41 (1977), 723-751 (in Russian). Zbl0388.10015
- [18] H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211-244. Zbl0759.11046
- [19] D. J. Lewis and K. Mahler, On the representation of integers by binary forms, Acta Arith. 6 (1961), 333-363. Zbl0102.03601
- [20] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. Zbl0747.11026
- [21] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. Zbl0606.10011
- [22] V. G. Sprindžuk, Classical Diophantine Equations, Lecture Notes in Math. 1559, Springer, 1993.
- [23] P. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1996), 81-95.
- [24] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.
- [25] K. Yu, Linear forms in p-adic logarithms III, Compositio Math. 91 (1994), 241-276. Zbl0819.11025
Citations in EuDML Documents
top- B. M. M. de Weger, C. E. van de Woestijne, On the power-free parts of consecutive integers
- Yuri Bilu, Yann Bugeaud, Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes
- Clemens Heuberger, Robert F. Tichy, Effective solution of families of Thue equations containing several parameters
- Nobuhiro Terai, Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
- Clemens Heuberger, Attila Pethő, Robert Franz Tichy, Complete solution of parametrized Thue equations
- Yann Bugeaud, Lower bounds for the greatest prime factor of
- Yann Bugeaud, Florian Luca, Maurice Mignotte, Samir Siksek, Almost powers in the Lucas sequence
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.