Bounds for the solutions of Thue-Mahler equations and norm form equations

Yann Bugeaud; Kálmán Győry

Acta Arithmetica (1996)

  • Volume: 74, Issue: 3, page 273-292
  • ISSN: 0065-1036

How to cite

top

Yann Bugeaud, and Kálmán Győry. "Bounds for the solutions of Thue-Mahler equations and norm form equations." Acta Arithmetica 74.3 (1996): 273-292. <http://eudml.org/doc/206853>.

@article{YannBugeaud1996,
author = {Yann Bugeaud, Kálmán Győry},
journal = {Acta Arithmetica},
keywords = {linear forms with algebraic coefficients; explicit bounds; Thue equations; binary form of degree ; norm form diophantine equations; Thue-Mahler equations},
language = {eng},
number = {3},
pages = {273-292},
title = {Bounds for the solutions of Thue-Mahler equations and norm form equations},
url = {http://eudml.org/doc/206853},
volume = {74},
year = {1996},
}

TY - JOUR
AU - Yann Bugeaud
AU - Kálmán Győry
TI - Bounds for the solutions of Thue-Mahler equations and norm form equations
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 3
SP - 273
EP - 292
LA - eng
KW - linear forms with algebraic coefficients; explicit bounds; Thue equations; binary form of degree ; norm form diophantine equations; Thue-Mahler equations
UR - http://eudml.org/doc/206853
ER -

References

top
  1. [1] A. Baker, Transcendental Number Theory, 2nd ed., Cambridge University Press, 1979. Zbl0497.10023
  2. [2] E. Bombieri, Effective diophantine approximation on Gₘ, Ann. Scuola Norm. Sup. Pisa (IV) 20 (1993), 61-89. Zbl0774.11034
  3. [3] Y. Bugeaud and K. Győry, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), 67-80. Zbl0861.11023
  4. [4] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 175-202. 
  5. [5] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174. Zbl0658.10023
  6. [6] N. I. Feldman, An effective refinement of the exponent in Liouville's theorem, Izv. Akad. Nauk SSSR 35 (1971), 973-990 (in Russian). 
  7. [7] I. Gaál, Norm form equations with several dominating variables and explicit lower bounds for inhomogeneous linear forms with algebraic coefficients II, Studia Sci. Math. Hungar. 20 (1985), 333-344. Zbl0625.10012
  8. [8] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné II, Publ. Math. Debrecen 21 (1974), 125-144. Zbl0303.12001
  9. [9] K. Győry, Explicit upper bounds for the solutions of some diophantine equations, Ann. Acad. Sci. Fenn. Ser. A Math. 5 (1980), 3-12. Zbl0402.10018
  10. [10] K. Győry, Explicit lower bounds for linear forms with algebraic coefficients, Arch. Math. (Basel) 35 (1980), 438-446. Zbl0437.10014
  11. [11] K. Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Appl. Math. 56, Queen's University, Kingston, 1980. Zbl0455.10011
  12. [12] K. Győry, On the representation of integers by decomposable forms in several variables, Publ. Math. Debrecen 28 (1981), 89-98. Zbl0477.10022
  13. [13] K. Győry, On S-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math. Hungar. 16 (1981), 149-161. Zbl0518.10019
  14. [14] K. Győry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, in: Studies in Pure Mathematics to the Memory of Paul Turán, Akadémiai Kiadó, Budapest, and Birkhäuser, Basel, 1983, 245-257. Zbl0518.10020
  15. [15] L. Hajdu, A quantitative version of Dirichlet's S-unit theorem in algebraic number fields, Publ. Math. Debrecen 42 (1993), 239-246. Zbl0798.11051
  16. [16] S. V. Kotov, Effective bound for a linear form with algebraic coefficients in the archimedean and p-adic metrics, Inst. Math. Akad. Nauk BSSR, Preprint No. 24, Minsk, 1981 (in Russian). 
  17. [17] S. V. Kotov and V. G. Sprindžuk, The Thue-Mahler equation in relative fields and approximation of algebraic numbers by algebraic numbers, Izv. Akad. Nauk SSSR 41 (1977), 723-751 (in Russian). Zbl0388.10015
  18. [18] H. W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26 (1992), 211-244. Zbl0759.11046
  19. [19] D. J. Lewis and K. Mahler, On the representation of integers by binary forms, Acta Arith. 6 (1961), 333-363. Zbl0102.03601
  20. [20] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59. Zbl0747.11026
  21. [21] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. Zbl0606.10011
  22. [22] V. G. Sprindžuk, Classical Diophantine Equations, Lecture Notes in Math. 1559, Springer, 1993. 
  23. [23] P. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1996), 81-95. 
  24. [24] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224. 
  25. [25] K. Yu, Linear forms in p-adic logarithms III, Compositio Math. 91 (1994), 241-276. Zbl0819.11025

Citations in EuDML Documents

top
  1. B. M. M. de Weger, C. E. van de Woestijne, On the power-free parts of consecutive integers
  2. Yuri Bilu, Yann Bugeaud, Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes
  3. Clemens Heuberger, Robert F. Tichy, Effective solution of families of Thue equations containing several parameters
  4. Nobuhiro Terai, Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
  5. Clemens Heuberger, Attila Pethő, Robert Franz Tichy, Complete solution of parametrized Thue equations
  6. Yann Bugeaud, Lower bounds for the greatest prime factor of a x m + b y n
  7. Yann Bugeaud, Florian Luca, Maurice Mignotte, Samir Siksek, Almost powers in the Lucas sequence

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.