On the number of coprime integer pairs within a circle

Wenguang Zhai; Xiaodong Cao

Acta Arithmetica (1999)

  • Volume: 90, Issue: 1, page 1-16
  • ISSN: 0065-1036

How to cite

top

Wenguang Zhai, and Xiaodong Cao. "On the number of coprime integer pairs within a circle." Acta Arithmetica 90.1 (1999): 1-16. <http://eudml.org/doc/207312>.

@article{WenguangZhai1999,
author = {Wenguang Zhai, Xiaodong Cao},
journal = {Acta Arithmetica},
keywords = {lattice points; circle; number of coprime integer pairs},
language = {eng},
number = {1},
pages = {1-16},
title = {On the number of coprime integer pairs within a circle},
url = {http://eudml.org/doc/207312},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Wenguang Zhai
AU - Xiaodong Cao
TI - On the number of coprime integer pairs within a circle
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 1
SP - 1
EP - 16
LA - eng
KW - lattice points; circle; number of coprime integer pairs
UR - http://eudml.org/doc/207312
ER -

References

top
  1. [1] R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145. 
  2. [2] E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa 13 (1986), 449-472. Zbl0615.10047
  3. [3] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333. Zbl0687.10028
  4. [4] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, ibid. 16 (1983), 242-266. Zbl0513.10042
  5. [5] D. Hensley, The number of lattice points within a contour and visible from the origin, Pacific J. Math. 166 (1994), 295-304. Zbl0849.11078
  6. [6] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301. Zbl0820.11060
  7. [7] A. Ivić, The Riemann Zeta-function, Wiley, 1985. Zbl0556.10026
  8. [8] C. H. Jia, On the distribution of squarefree numbers (II), Sci. China Ser. A 8 (1992), 812-827. 
  9. [9] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988. 
  10. [10] S. H. Min, Methods of Number Theory, Science Press, Beijing, 1983 (in Chinese). 
  11. [11] W. G. Nowak, Primitive lattice points in rational ellipses and related arithmetical functions, Monatsh. Math. 106 (1988), 57-63. Zbl0678.10032
  12. [12] B. R. Srinivasan, The lattice point problem of many-dimensional hyperboloids II, Acta Arith. 8 (1963), 173-204. Zbl0118.28201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.