Primitive lattice points inside an ellipse

Werner Georg Nowak

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 2, page 519-530
  • ISSN: 0011-4642

Abstract

top
Let Q ( u , v ) be a positive definite binary quadratic form with arbitrary real coefficients. For large real x , one may ask for the number B ( x ) of primitive lattice points (integer points ( m , n ) with gcd ( M , n ) = 1 ) in the ellipse disc Q ( u , v ) x , in particular, for the remainder term R ( x ) in the asymptotics for B ( x ) . While upper bounds for R ( x ) depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or R ( x ) is, in integral mean, at least a positive constant c time x 1 / 4 . Furthermore, it is shown how to find an explicit value for c , for each specific given form Q .

How to cite

top

Nowak, Werner Georg. "Primitive lattice points inside an ellipse." Czechoslovak Mathematical Journal 55.2 (2005): 519-530. <http://eudml.org/doc/30966>.

@article{Nowak2005,
abstract = {Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^\{1/4\}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.},
author = {Nowak, Werner Georg},
journal = {Czechoslovak Mathematical Journal},
keywords = {primitive lattice points; lattice point discrepancy; planar domains; primitive lattice points; lattice point discrepancy; planar domains},
language = {eng},
number = {2},
pages = {519-530},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Primitive lattice points inside an ellipse},
url = {http://eudml.org/doc/30966},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Nowak, Werner Georg
TI - Primitive lattice points inside an ellipse
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 519
EP - 530
AB - Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^{1/4}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.
LA - eng
KW - primitive lattice points; lattice point discrepancy; planar domains; primitive lattice points; lattice point discrepancy; planar domains
UR - http://eudml.org/doc/30966
ER -

References

top
  1. On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), 461–481. (1992) Zbl0762.11031MR1181309
  2. More than two fifth of the zeros of the Riemann zeta-function are on the critical line, J. Reine Angew. Math. 399 (1989), 1–26. (1989) MR1004130
  3. On the zeros of certain Dirichlet series  I, J. London Math. Soc. 11 (1936), 181–185. (1936) MR1574345
  4. On the zeros of certain Dirichlet series  II, J. London Math. Soc. 11 (1936), 307–312. (1936) MR1574931
  5. Table of Integrals, Series, and Products, 5th ed., A. Jeffrey (ed.), Academic Press, San Diego, 1994. (1994) MR1243179
  6. Exponential sums and lattice points  II, Proc. London Math. Soc. 66 (1993), 279–301. (1993) Zbl0820.11060MR1199067
  7. Area, Lattice Points, and Exponential Sums. LMS Monographs, New Ser. Vol.  13, Clarendon Press, Oxford, 1996. (1996) MR1420620
  8. Exponential sums and lattice points  III, Proc. London Math. Soc. 87 (2003), 591–609. (2003) Zbl1065.11079MR2005876
  9. 10.4064/aa-76-3-271-283, Acta Arithm. 76 (1996), 271–283. (1996) MR1397317DOI10.4064/aa-76-3-271-283
  10. The Riemann zeta-function, Wiley & Sons, New York, 1985. (1985) MR0792089
  11. Lattice Points, Kluwer Academic Publishers, Berlin, 1988. (1988) MR0998378
  12. Analytische Funktionen in der Zahlentheorie, Teubner, Wiesbaden, 2000. (2000) MR1889901
  13. 10.1016/0001-8708(74)90074-7, Adv. Math. 13 (1974), 383–436. (1974) MR0564081DOI10.1016/0001-8708(74)90074-7
  14. Lattice points in convex planar domains: Power moments with an application to primitive lattice points, In: Proc. Number Theory Conf., Vienna  1996, W. G. Nowak, J. Schoißengeier (eds.), , Vienna, 1996, pp. 189–199. (1996) 
  15. 10.1017/S0308210500013834, Proc.Roy. Soc. Edinburgh, Sect.  A 100 (1985), 295–299. (1985) Zbl0582.10033MR0807708DOI10.1017/S0308210500013834
  16. 10.1007/s00013-002-8242-0, Arch. Math. (Basel) 78 (2002), 241–248. (2002) Zbl1013.11065MR1888708DOI10.1007/s00013-002-8242-0
  17. On the distribution of square-free numbers, J. London Math. Soc. 28 (1983), 401–405. (1983) Zbl0532.10025MR0724708
  18. Approximate equations for the Epstein zeta-function, Proc. London Math. Soc. 36 (1934), 501–515. (1934) Zbl0008.30001
  19. On the Zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad., Oslo, 1943. (1943) Zbl0028.11101MR0010712
  20. The Theory of the Riemann zeta-function, 2nd ed, Clarendon Press, Oxford, 1986. (1986) Zbl0601.10026MR0882550
  21. On the zeros of zeta-functions of quadratic forms, Trudy Mat. Inst. Steklova 142 (1976), 135–147. (1976) Zbl0432.10009MR0562285
  22. Wolfram Research, Inc., Mathematica 4.1, , Champaign, 2001. 
  23. 10.1007/s006050200006, Monatsh. Math. 135 (2002), 69–81. (2002) Zbl0994.11035MR1894296DOI10.1007/s006050200006
  24. On the number of coprime integer pairs within a circle, Acta Arithm. 90 (1999), 1–16. (1999) MR1708625
  25. 10.4064/aa109-1-1, Acta Arithm. 109 (2003), 1–26. (2003) Zbl1027.11075MR1980849DOI10.4064/aa109-1-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.