Primitive lattice points inside an ellipse
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 2, page 519-530
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNowak, Werner Georg. "Primitive lattice points inside an ellipse." Czechoslovak Mathematical Journal 55.2 (2005): 519-530. <http://eudml.org/doc/30966>.
@article{Nowak2005,
abstract = {Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^\{1/4\}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.},
author = {Nowak, Werner Georg},
journal = {Czechoslovak Mathematical Journal},
keywords = {primitive lattice points; lattice point discrepancy; planar domains; primitive lattice points; lattice point discrepancy; planar domains},
language = {eng},
number = {2},
pages = {519-530},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Primitive lattice points inside an ellipse},
url = {http://eudml.org/doc/30966},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Nowak, Werner Georg
TI - Primitive lattice points inside an ellipse
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 519
EP - 530
AB - Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^{1/4}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.
LA - eng
KW - primitive lattice points; lattice point discrepancy; planar domains; primitive lattice points; lattice point discrepancy; planar domains
UR - http://eudml.org/doc/30966
ER -
References
top- On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), 461–481. (1992) Zbl0762.11031MR1181309
- More than two fifth of the zeros of the Riemann zeta-function are on the critical line, J. Reine Angew. Math. 399 (1989), 1–26. (1989) MR1004130
- On the zeros of certain Dirichlet series I, J. London Math. Soc. 11 (1936), 181–185. (1936) MR1574345
- On the zeros of certain Dirichlet series II, J. London Math. Soc. 11 (1936), 307–312. (1936) MR1574931
- Table of Integrals, Series, and Products, 5th ed., A. Jeffrey (ed.), Academic Press, San Diego, 1994. (1994) MR1243179
- Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279–301. (1993) Zbl0820.11060MR1199067
- Area, Lattice Points, and Exponential Sums. LMS Monographs, New Ser. Vol. 13, Clarendon Press, Oxford, 1996. (1996) MR1420620
- Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591–609. (2003) Zbl1065.11079MR2005876
- 10.4064/aa-76-3-271-283, Acta Arithm. 76 (1996), 271–283. (1996) MR1397317DOI10.4064/aa-76-3-271-283
- The Riemann zeta-function, Wiley & Sons, New York, 1985. (1985) MR0792089
- Lattice Points, Kluwer Academic Publishers, Berlin, 1988. (1988) MR0998378
- Analytische Funktionen in der Zahlentheorie, Teubner, Wiesbaden, 2000. (2000) MR1889901
- 10.1016/0001-8708(74)90074-7, Adv. Math. 13 (1974), 383–436. (1974) MR0564081DOI10.1016/0001-8708(74)90074-7
- Lattice points in convex planar domains: Power moments with an application to primitive lattice points, In: Proc. Number Theory Conf., Vienna 1996, W. G. Nowak, J. Schoißengeier (eds.), , Vienna, 1996, pp. 189–199. (1996)
- 10.1017/S0308210500013834, Proc.Roy. Soc. Edinburgh, Sect. A 100 (1985), 295–299. (1985) Zbl0582.10033MR0807708DOI10.1017/S0308210500013834
- 10.1007/s00013-002-8242-0, Arch. Math. (Basel) 78 (2002), 241–248. (2002) Zbl1013.11065MR1888708DOI10.1007/s00013-002-8242-0
- On the distribution of square-free numbers, J. London Math. Soc. 28 (1983), 401–405. (1983) Zbl0532.10025MR0724708
- Approximate equations for the Epstein zeta-function, Proc. London Math. Soc. 36 (1934), 501–515. (1934) Zbl0008.30001
- On the Zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad., Oslo, 1943. (1943) Zbl0028.11101MR0010712
- The Theory of the Riemann zeta-function, 2nd ed, Clarendon Press, Oxford, 1986. (1986) Zbl0601.10026MR0882550
- On the zeros of zeta-functions of quadratic forms, Trudy Mat. Inst. Steklova 142 (1976), 135–147. (1976) Zbl0432.10009MR0562285
- Wolfram Research, Inc., Mathematica 4.1, , Champaign, 2001.
- 10.1007/s006050200006, Monatsh. Math. 135 (2002), 69–81. (2002) Zbl0994.11035MR1894296DOI10.1007/s006050200006
- On the number of coprime integer pairs within a circle, Acta Arithm. 90 (1999), 1–16. (1999) MR1708625
- 10.4064/aa109-1-1, Acta Arithm. 109 (2003), 1–26. (2003) Zbl1027.11075MR1980849DOI10.4064/aa109-1-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.