Rapidly convergent series representations for ζ(2n+1) and their χ-analogue

Masanori Katsurada

Acta Arithmetica (1999)

  • Volume: 90, Issue: 1, page 79-89
  • ISSN: 0065-1036

How to cite

top

Masanori Katsurada. "Rapidly convergent series representations for ζ(2n+1) and their χ-analogue." Acta Arithmetica 90.1 (1999): 79-89. <http://eudml.org/doc/207316>.

@article{MasanoriKatsurada1999,
author = {Masanori Katsurada},
journal = {Acta Arithmetica},
keywords = {Riemann zeta-function; Dirichlet L-function; Mellin-Barnes integral; series representation; Dirichlet -functions; asymptotic expansion; Bernoulli numbers; series representations},
language = {eng},
number = {1},
pages = {79-89},
title = {Rapidly convergent series representations for ζ(2n+1) and their χ-analogue},
url = {http://eudml.org/doc/207316},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Masanori Katsurada
TI - Rapidly convergent series representations for ζ(2n+1) and their χ-analogue
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 1
SP - 79
EP - 89
LA - eng
KW - Riemann zeta-function; Dirichlet L-function; Mellin-Barnes integral; series representation; Dirichlet -functions; asymptotic expansion; Bernoulli numbers; series representations
UR - http://eudml.org/doc/207316
ER -

References

top
  1. [Ay] R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067-1086. Zbl0293.10001
  2. [Ch] B. R. Choe, An elementary proof of n = 1 1 / n ² = π 2 / 6 , Amer. Math. Monthly 94 (1987), 662-663. Zbl0624.40001
  3. [CK] D. Cvijović and J. Klinowski, New rapidly convergent series representations for ζ(2n+1), Proc. Amer. Math. Soc. 125 (1997), 1263-1271. Zbl0863.11055
  4. [Ew1] J. A. Ewell, A new series representation for ζ(3), Amer. Math. Monthly 97 (1990), 219-220. 
  5. [Ew2] J. A. Ewell, On values of the Riemann zeta function at integral arguments, Canad. Math. Bull. 34 (1991), 60-66. 
  6. [Ew3] J. A. Ewell, On the zeta function values ζ(2k+1), k=1,2,..., Rocky Mountain J. Math. 23 (1995), 1003-1012. 
  7. [Iv] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985. 
  8. [Ka1] M. Katsurada, Power series with the Riemann zeta-function in the coefficients, Proc. Japan Acad. Ser. A 72 (1996), 61-63. Zbl0860.11050
  9. [Ka2] M. Katsurada, On Mellin-Barnes type of integrals and sums associated with the Riemann zeta-function, Publ. Inst. Math. (Beograd) (N.S.) 62 (76) (1997), 13-25. 
  10. [Ka3] M. Katsurada, Power series and asymptotic series associated with the Lerch zeta-function, Proc. Japan Acad. Ser. A 74 (1998), 167-170. Zbl0937.11035
  11. [Ra] V. Ramaswami, Notes on Riemann's ζ-function, J. London Math. Soc. 9 (1934), 165-169. Zbl0009.34801
  12. [Sr1] H. M. Srivastava, A unified presentation of certain classes of series of the Riemann zeta function, Riv. Mat. Univ. Parma (4) 14 (1988), 1-23. Zbl0659.10047
  13. [Sr2] H. M. Srivastava, Certain families of rapidly convergent series representations for ζ(2n+1), Math. Sci. Research Hot-Line 1 (6) (1997), 1-6. 
  14. [Sr3] H. M. Srivastava, Some rapidly converging series for ζ(2n+1), Proc. Amer. Math. Soc. 127 (1999), 385-396. Zbl0903.11020
  15. [Ti] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986. 
  16. [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982. Zbl0484.12001
  17. [Wi] J. R. Wilton, A proof of Burnside's formula for Γ(x+1) and certain allied properties of Riemann's ζ-function, Messenger Math. 52 (1922/1923), 90-93. 
  18. [YW] Z.-N. Yue and K. S. Williams, Some series representations of ζ(2n+1), Rocky Mountain J. Math. 23 (1993), 1581-1591. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.