Nonanalytic automorphic integrals on the Hecke groups

Paul C. Pasles

Acta Arithmetica (1999)

  • Volume: 90, Issue: 2, page 155-171
  • ISSN: 0065-1036

Abstract

top
1. Introduction. Since its genesis over a century ago in work of Jacobi, Riemann, Poincar ́e and Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a branch of analytic number theory into an industry all its own. Natural extensions of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions at once has also been the subject of some scrutiny. In the present study, inspired by unpublished work of Knopp [Kn94], we consider the nonanalytic automorphic integral.

How to cite

top

Paul C. Pasles. "Nonanalytic automorphic integrals on the Hecke groups." Acta Arithmetica 90.2 (1999): 155-171. <http://eudml.org/doc/207320>.

@article{PaulC1999,
abstract = {1. Introduction. Since its genesis over a century ago in work of Jacobi, Riemann, Poincar ́e and Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a branch of analytic number theory into an industry all its own. Natural extensions of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions at once has also been the subject of some scrutiny. In the present study, inspired by unpublished work of Knopp [Kn94], we consider the nonanalytic automorphic integral.},
author = {Paul C. Pasles},
journal = {Acta Arithmetica},
keywords = {automorphic integrals; modular integrals; weight-changing operators; Eisenstein series; nonanalytic automorphic integral; log-polynomial sum; weight-changing operator; Hecke group},
language = {eng},
number = {2},
pages = {155-171},
title = {Nonanalytic automorphic integrals on the Hecke groups},
url = {http://eudml.org/doc/207320},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Paul C. Pasles
TI - Nonanalytic automorphic integrals on the Hecke groups
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 2
SP - 155
EP - 171
AB - 1. Introduction. Since its genesis over a century ago in work of Jacobi, Riemann, Poincar ́e and Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a branch of analytic number theory into an industry all its own. Natural extensions of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions at once has also been the subject of some scrutiny. In the present study, inspired by unpublished work of Knopp [Kn94], we consider the nonanalytic automorphic integral.
LA - eng
KW - automorphic integrals; modular integrals; weight-changing operators; Eisenstein series; nonanalytic automorphic integral; log-polynomial sum; weight-changing operator; Hecke group
UR - http://eudml.org/doc/207320
ER -

References

top
  1. [Ap90] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd ed., Springer, New York, 1990. 
  2. [Ei57] M. Eichler, Eine Verallgemeinerung der Abelsche Integrale, Math. Z. 67 (1957), 267-298. Zbl0080.06003
  3. [ER74] J. Elstrodt und W. Roelcke, Über das wesentliche Spektrum zum Eigenwertproblem der automorphen Formen, Manuscripta Math. 11 (1974), 391-406. 
  4. [Fr85] S. Friedberg, Differential operators and theta series, Trans. Amer. Math. Soc. 287 (1985), 569-589. Zbl0524.10020
  5. [Gu63] R. C. Gunning, Lectures on Modular Forms, Ann. of Math. Stud. 48, Princeton Univ. Press, Princeton, 1963. 
  6. [Ha99] A. Hassen, Log-polynomial period functions for Hecke groups, Ramanujan J. 3 (1999), 119-151. Zbl0938.11024
  7. [He38] E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Edwards Brothers, Ann Arbor, 1938. 
  8. [He59] E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959. 
  9. [Hu81] A. Hurwitz, Grundlagen einer independenten Theorie der elliptischen Modulfunctionen und Theorie der Multiplicatorgleichungen erster Stufe, Math. Ann. 18 (1881), 528-591. 
  10. [Iw97] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, Amer. Math. Soc., Providence, 1997. 
  11. [Ja29] C. G. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, 1829. 
  12. [Kn83] M. I. Knopp, The weight-changing operator and the Mellin transform of modular integrals, in: Lecture Notes in Math. 1013, Springer, 1983, 284-291. 
  13. [Kn86] M. I. Knopp, On the Fourier coefficients of small positive powers of θ(τ), Invent. Math. 85 (1986), 165-183. 
  14. [Kn89] M. I. Knopp, On the Fourier coefficients of cusp forms having small positive weight, in: Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., 1989, 111-127. 
  15. [Kn89a] M. I. Knopp, Recent developments in the theory of rational period functions, in: Lecture Notes in Math. 1383, Springer, 1989, 111-122. 
  16. [Kn93] M. I. Knopp, Modular Functions in Analytic Number Theory, 2nd ed., Chelsea, New York, 1993. 
  17. [Kn94] M. I. Knopp, Nonanalytic Modular Integrals, unpublished lectures at Bryn Mawr College, June-July 1994. 
  18. [Kn94a] M. I. Knopp, On Dirichlet series satisfying Riemann's functional equation, Invent. Math. 117 (1994), 361-372. Zbl0816.11032
  19. [KS96] M. I. Knopp and M. Sheingorn, On Dirichlet series and Hecke triangle groups of infinite volume, Acta Arith. 76 (1996), 227-244. 
  20. [Le64] J. Lehner, Discontinuous Groups and Automorphic Functions, Math. Surveys Monographs 8, Amer. Math. Soc., Providence, 1964. 
  21. [Le66] J. Lehner, A Short Course in Automorphic Functions, Holt, Rinehart, and Winston, New York, 1966. 
  22. [Ma38] H. Maass, Konstruktion ganzer Modulformen halbzahliger Dimension mit Theta Multiplikatoren in einer und zwei Variablen, Abh. Math. Sem. Hansische Univ. 12 (1938), 133-162. Zbl64.0109.01
  23. [Ma64] H. Maass, Lectures on Modular Functions of One Complex Variable, Lectures on Math. 29, Tata Institute of Fundamental Research, Bombay, 1964. 
  24. [Pa98] P. C. Pasles, Convergence of Poincaré series with two complex coweights, Contemp. Math., to appear. Zbl0960.11028
  25. [Pa99] P. C. Pasles, A Hecke correspondence theorem for nonanalytic automorphic integrals on the Hecke groups, submitted. 
  26. [Ra77] R. Rankin, Modular Functions and Forms, Cambridge Univ. Press, Cambridge, 1977. 
  27. [Ri53] B. Riemann, Collected Works, 2nd ed., Dover, 1953. 
  28. [Sc74] B. Schoeneberg, Elliptic Modular Functions: An Introduction, Springer, New York, 1974. 
  29. [Sel56] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. Zbl0072.08201
  30. [Ser70] J.-P. Serre, A Course in Arithmetic, Springer, New York, 1970. 
  31. [Sh94] G. Shimura, Introduction to Arithmetic Theory of Automorphic Forms, Publ. Math. Soc. Japan 11, Princeton Univ. Press, Princeton, 1994. 
  32. [Si56] C. L. Siegel, Die Funktionalgleichungen einiger Dirichletscher Reihen, Math. Z. 63 (1956), 363-373. Zbl0070.07702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.