Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function
Acta Arithmetica (1999)
- Volume: 91, Issue: 1, page 75-83
- ISSN: 0065-1036
Access Full Article
topHow to cite
topA. Rotkiewicz. "Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C_x$." Acta Arithmetica 91.1 (1999): 75-83. <http://eudml.org/doc/207340>.
@article{A1999,
author = {A. Rotkiewicz},
journal = {Acta Arithmetica},
keywords = {pseudoprime numbers; Carmichael numbers; congruences},
language = {eng},
number = {1},
pages = {75-83},
title = {Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C_x$},
url = {http://eudml.org/doc/207340},
volume = {91},
year = {1999},
}
TY - JOUR
AU - A. Rotkiewicz
TI - Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C_x$
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 1
SP - 75
EP - 83
LA - eng
KW - pseudoprime numbers; Carmichael numbers; congruences
UR - http://eudml.org/doc/207340
ER -
References
top- [1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 140 (1994), 703-722. Zbl0816.11005
- [2] N. G. W. H. Beeger, On even numbers m dividing , Amer. Math. Monthly 58 (1951), 553-555. Zbl0044.26903
- [3] M. Cipolla, Sui numeri composti P, che verificano la congruenza di Fermat , Ann. di Mat. (3) 9 (1904), 139-160.
- [4] J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The primary pretenders, Acta Arith. 78 (1997), 307-313. Zbl0863.11005
- [5] A. Korselt, Problème chinois, L'intermédiare des mathématiciens 6 (1899), 142-143.
- [6] C. Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4-9.
- [7] C. Pomerance, I. L. Selfridge and S. S. Wagstaff, The pseudoprimes to 25·10⁹, Math. Comp. 35 (1980), 1003-1026. Zbl0444.10007
- [8] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996. Zbl0856.11001
- [9] A. Rotkiewicz, Pseudoprime Numbers and Their Generalizations, Student Association of Faculty of Sciences, Univ. of Novi Sad, 1972. Zbl0324.10007
- [10] A. Schinzel, Sur les nombres composés n qui divisent , Rend. Circ. Mat. Palermo (2) 7 (1958), 37-41. Zbl0083.26103
- [11] W. Sierpiński, A remark on composite numbers m which are factors of , Wiadom. Mat. 4 (1961), 183-184 (in Polish; MR 23A87). Zbl0104.26802
- [12] W. Sierpiński, Elementary Theory of Numbers, Monografie Mat. 42, PWN, Warszawa, 1964 (2nd ed., North-Holland, Amsterdam, 1987). Zbl0122.04402
- [13] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.