Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function l x C

A. Rotkiewicz

Acta Arithmetica (1999)

  • Volume: 91, Issue: 1, page 75-83
  • ISSN: 0065-1036

How to cite

top

A. Rotkiewicz. "Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C_x$." Acta Arithmetica 91.1 (1999): 75-83. <http://eudml.org/doc/207340>.

@article{A1999,
author = {A. Rotkiewicz},
journal = {Acta Arithmetica},
keywords = {pseudoprime numbers; Carmichael numbers; congruences},
language = {eng},
number = {1},
pages = {75-83},
title = {Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C_x$},
url = {http://eudml.org/doc/207340},
volume = {91},
year = {1999},
}

TY - JOUR
AU - A. Rotkiewicz
TI - Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function $l^C_x$
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 1
SP - 75
EP - 83
LA - eng
KW - pseudoprime numbers; Carmichael numbers; congruences
UR - http://eudml.org/doc/207340
ER -

References

top
  1. [1] W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 140 (1994), 703-722. Zbl0816.11005
  2. [2] N. G. W. H. Beeger, On even numbers m dividing 2 m - 2 , Amer. Math. Monthly 58 (1951), 553-555. Zbl0044.26903
  3. [3] M. Cipolla, Sui numeri composti P, che verificano la congruenza di Fermat a P - 1 1 ( m o d P ) , Ann. di Mat. (3) 9 (1904), 139-160. 
  4. [4] J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The primary pretenders, Acta Arith. 78 (1997), 307-313. Zbl0863.11005
  5. [5] A. Korselt, Problème chinois, L'intermédiare des mathématiciens 6 (1899), 142-143. 
  6. [6] C. Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4-9. 
  7. [7] C. Pomerance, I. L. Selfridge and S. S. Wagstaff, The pseudoprimes to 25·10⁹, Math. Comp. 35 (1980), 1003-1026. Zbl0444.10007
  8. [8] P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996. Zbl0856.11001
  9. [9] A. Rotkiewicz, Pseudoprime Numbers and Their Generalizations, Student Association of Faculty of Sciences, Univ. of Novi Sad, 1972. Zbl0324.10007
  10. [10] A. Schinzel, Sur les nombres composés n qui divisent a n - a , Rend. Circ. Mat. Palermo (2) 7 (1958), 37-41. Zbl0083.26103
  11. [11] W. Sierpiński, A remark on composite numbers m which are factors of a m - a , Wiadom. Mat. 4 (1961), 183-184 (in Polish; MR 23A87). Zbl0104.26802
  12. [12] W. Sierpiński, Elementary Theory of Numbers, Monografie Mat. 42, PWN, Warszawa, 1964 (2nd ed., North-Holland, Amsterdam, 1987). Zbl0122.04402
  13. [13] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.