Arithmetic progressions formed by pseudoprimes

Andrzej Rotkiewicz

Acta Mathematica et Informatica Universitatis Ostraviensis (2000)

  • Volume: 08, Issue: 1, page 61-74
  • ISSN: 1804-1388

How to cite

top

Rotkiewicz, Andrzej. "Arithmetic progressions formed by pseudoprimes." Acta Mathematica et Informatica Universitatis Ostraviensis 08.1 (2000): 61-74. <http://eudml.org/doc/23839>.

@article{Rotkiewicz2000,
author = {Rotkiewicz, Andrzej},
journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
keywords = {pseudoprime; super pseudoprime; prime pretender; Carmichael number; Fibonacci pseudoprime; Lucas pseudoprime; Lehmer pseudoprime; Fibonacci sequence; Lucas number; Lehmer number},
language = {eng},
number = {1},
pages = {61-74},
publisher = {University of Ostrava},
title = {Arithmetic progressions formed by pseudoprimes},
url = {http://eudml.org/doc/23839},
volume = {08},
year = {2000},
}

TY - JOUR
AU - Rotkiewicz, Andrzej
TI - Arithmetic progressions formed by pseudoprimes
JO - Acta Mathematica et Informatica Universitatis Ostraviensis
PY - 2000
PB - University of Ostrava
VL - 08
IS - 1
SP - 61
EP - 74
LA - eng
KW - pseudoprime; super pseudoprime; prime pretender; Carmichael number; Fibonacci pseudoprime; Lucas pseudoprime; Lehmer pseudoprime; Fibonacci sequence; Lucas number; Lehmer number
UR - http://eudml.org/doc/23839
ER -

References

top
  1. Alford W.R., Granville A., Pomerance C., 10.2307/2118576, Ann. of Math. 140 (1994), 703-722. (1994) Zbl0816.11005MR1283874DOI10.2307/2118576
  2. Baillie R., Wagstaff S., Jr., 10.1090/S0025-5718-1980-0583518-6, Math. Comp. 35 (1980), 1391-1417. (1980) Zbl0458.10003MR0583518DOI10.1090/S0025-5718-1980-0583518-6
  3. BEEGER N.G.W.R., 10.2307/2306320, Amer. Math. Monthly 58 (1951), 553-555. (1951) MR0043798DOI10.2307/2306320
  4. Carmichael R.D., 10.2307/1967797, Ann. of Math. (2) 15 (1913), 30-70. (1913) MR1502458DOI10.2307/1967797
  5. Chowla S., There exists an infinity of 3-combinations of primes in A.P., Proc Lahore Philos. Ser. 6, no 2 (1944), 15-16. (1944) Zbl0063.00875MR0014125
  6. ClPOLLA M., Sui numeri composti P che verificiano la congruenza di Fermat a P - 1 1 ( mod P ) , Annali di Matematica (3) 9 (1904), 139-160. (1904) 
  7. Conway J.H., Guy R.K., Schneeberger W.A., Sloane N.J.A., The primary pretenders, Acta Arith. 78 (1997), 307-313. (1997) Zbl0863.11005MR1438588
  8. Dickson L.E., A new extension of Dirichlet's theorem on prime numbers, Messenger Math. 33 (1904), 155-161. (1904) 
  9. Dickson L.E., History of the Theory of Numbers, 3 vols., Washington 1919- 1923, reprint New York 1966. (1919) 
  10. Duparc H.J.A., On almost primes of the second order, Math. Centrum Amsterdam. Rap. ZW 1955-013, (1955), 1-13 . (1955) Zbl0067.27303
  11. Duparc H.J.A., A remark to report Z.W.-013, Math. Centrum Amsterdam, Rap. Z.W. 1956-008. (1956) 
  12. Durst L.K., 10.2140/pjm.1959.9.437, Pacific J. Math. 9 (1959), 437-441. (1959) Zbl0091.04204MR0108465DOI10.2140/pjm.1959.9.437
  13. Erdos P., 10.2307/2307640, Amer. Math. Monthly 57 (1950), 404-407. (1950) MR0036259DOI10.2307/2307640
  14. GRANVILLE A.J., The prime k-tuplets conjecture implies that there are arbitrarily long arithmetic progressions of Carmichael numbers, (written communication of December 1995). (1995) 
  15. Heath-Brown D.R., 10.1112/jlms/s2-23.3.396, J. London Math. Soc, (2) 23 (1981), 396-414. (1981) Zbl0425.10051MR0616545DOI10.1112/jlms/s2-23.3.396
  16. Jeans J.A., The converse of Fermat's theorem, Messenger of Mathematics 27 (1898), p. 174. 
  17. Kernbaum S., O szeregu Fibonacciego i jego uogolnieniach, Wiadom. Mat. 24 (1920), 203-217, II ibid. 25 (1921), 49-68. (1920) 
  18. Korselt A., Probleme chinois, L'intermediare des mathematiciens 6 (1899), 142-143. 
  19. Lehmer D.H., 10.2307/1968235, Ann. of Math. 31 (1930), 419-448. (1930) MR1502953DOI10.2307/1968235
  20. Lehmer E., On the infinitude of Fibonacci pseudoprimes, Fibonacci Quart. 2 (1964), 229-230. (1964) 
  21. Lehmer D.H., 10.1017/S1446788700019364, J. Austral. Math. Soc Ser. A 21 (1978), 508-510. (1978) MR0417032DOI10.1017/S1446788700019364
  22. McDaniel W.L., 10.1090/S0025-5718-1989-0968152-6, Math. Comp. 53 (1989), 407-409. (1989) Zbl0678.10003MR0968152DOI10.1090/S0025-5718-1989-0968152-6
  23. Mahnke D., Leibniz and der Suché nach einer allgemeinem Primzahlgleichung, Bibliotheca Math. Vol. 13 (1913), 29-61. (1913) 
  24. Needham J., Science and Civilization in China, vol. 3: Mathematics and Sciences of the Heavens and the Earth, Cambridge 1959, p. 54, footnote A. (1959) MR0139507
  25. Niewiadomski R., Spostrzezenia nad liczbami szeregu Fibonacciego, Wiadom. Mat. 15 (1911), 225-233. (1911) 
  26. RlBENBOIM P., The New Book of Prime Number Records, Springer-Verlag, New York - Heidelberg - Berlin, 1996. (1996) MR1377060
  27. Rotkiewicz A., Sur les formules donnant des nombres pseudopremiers, Colloq. Math. 12 (1964), 69-72. (1964) Zbl0129.02703MR0166138
  28. ROTKIEWICZ A., Sur les progressions arithmétiques et géométriques formées de trois nombres pseudopremiers distincts, Acta Arith. 10 (1964), 325-328. (1964) Zbl0125.02304MR0171768
  29. Rotkiewicz A., On arithmetical progressions formed by k different pseudo-primes, J. Math. Sci. 4 (1969), 5-10. (1969) MR0250987
  30. Rotkiewicz A., Pseudoprime numbers and their generalizations, Student Association of the Faculty of Sciences, University of Novi Sad, Novi Sad 1972, pp. i+169. (1972) Zbl0324.10007MR0330034
  31. Rotkiewicz A., On the pseudoprimes of the form a x + b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 20 (1972), 349-354. (1972) Zbl0249.10012MR0309843
  32. Rotkiewicz A., 10.1007/BF02849586, Rend. Circ Mat. Palermo (2) 28 (1979), 62-64. (1979) MR0564551DOI10.1007/BF02849586
  33. Rotkiewicz A., 10.1007/BF02849758, Rend. Circ. Mat. Palermo (2) 29 (1980), 420-426. (1980) MR0638680DOI10.1007/BF02849758
  34. Rotkiewicz A., On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L , Q in arithmetic progression, Math. Comp. 39 (1982), 239-247. (1982) MR0658229
  35. Rotkiewicz A., On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions, Acta Arith. 68 (1994), 145-151. (1994) Zbl0822.11016MR1305197
  36. Rotkiewicz A., Arithmetical progressions formed by k different pseudoprimes, Rend. Circ. Mat. Palermo (2) 43 (1994), 391-402. (1994) MR1344876
  37. Rotkiewicz A., Ziemak K., On even pseudoprimes, The Fibonacci Quarterly, 33 (1995), 123-125. (1995) Zbl0827.11003MR1329016
  38. Rotkiewicz A., 10.1007/978-94-011-5020-0_37, Applications of Fibonacci Numbers, Volume 7, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, the Netherlands 1998, 327-332. (1998) Zbl0926.11004MR1638459DOI10.1007/978-94-011-5020-0_37
  39. ROTKIEWICZ A., Arithmetical progression formed by Lucas pseudoprimes, Number Theory, Diophantine, Computational and Algebraic Aspects, Editors: Kálmán Gyóry, Attila Pethó and Vera T. Sos, Walter de Gruyter GmbH & Co., Berlin, New York 1998, 465-472. (1998) MR1628862
  40. Rotkiewicz A., Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function l x C , Acta Arith. 91 (1999), 75-83. (1999) MR1726476
  41. Rotkiewicz A., Schinzel A., Lucas pseudoprimes with a prescribed value of the Jacobi symbol, Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. Zbl0951.11002MR1751157
  42. Schinzel A., 10.1007/BF02591623, Ark. Mat. 4 (1962), 413-416. (1962) Zbl0106.03105MR0139567DOI10.1007/BF02591623
  43. Schinzel A., On primitive prime factors of Lehmer numbers I, Acta Arith. 8 (1963), 213-223. (1963) Zbl0118.27901MR0151423
  44. Schinzel A., Sierpiňski W., Sur certaines hypotheses concernant les nombres premiers, Acta Arith. 4 (1958), 185-208, and corrigendum, ibidem 5 (1960), 259. (1958) MR0106202
  45. SlERPlNSKl W., Remarque sur une hypothěse des Chinois concernant les nombres ( 2 n - 2 ) / n , Colloq. Math. 1 (1947), 9. (1947) 
  46. SlERPlNSKl W., Elementary Theory of Numbers, Monografie Matematyczne 42, PWN, Warsaw 1964 (second edition: North-Holland, Amsterdam, New York, Oxford 1987). (1964) MR0930670
  47. Steuerwald R., Über die Kongruenz 2 n - 1 1 ( mod n ) , Sitz.-Ber. math. naturw. Kl. Bayer. Akad. Wiss. Munchen 1947, 177. (1947) MR0030541
  48. Szymiczek K., Kilka twierdzen o liczbach pseudopierwszych, Zeszyty naukowe Wyzszej Szkoly Pedagogicznej w Katowicach, Sekcja Matematyki, Zeszyt Nr 5 (1966), 39-46. (1966) 
  49. Szymiczek K., Note on Fermat numbers, Elem. Math. 21 (1966), 59. (1966) Zbl0142.28904MR0193056
  50. Van der Corput J.G., 10.1007/BF01597346, Math. Ann. 116 (1939), 1-50. (1939) MR1513216DOI10.1007/BF01597346
  51. Ward M., 10.2307/1969677, Ann. of Math. (2) 62 (1955), 230-236. (1955) MR0071446DOI10.2307/1969677
  52. ZSIGMONDY K., 10.1007/BF01692444, Monatsh. Math. 3 (1892), 265-284. MR1546236DOI10.1007/BF01692444

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.