Transcendence measure for η/ω
Acta Arithmetica (2000)
- Volume: 92, Issue: 1, page 11-25
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] G. Diaz et M. Mignotte, Passage d'une mesure d'approximation à une de transcendance, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 4, 131-134. Zbl0763.11032
- [2] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1952.
- [3] A. O. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960. Zbl0090.26103
- [4] M. Hall, Jr., Combinatorial Theory, 2nd ed., Wiley, 1986.
- [5] S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, MA, 1966. Zbl0144.04101
- [6] S. Lang, Elliptic Functions, Addison-Wesley, Reading, MA, 1973.
- [7] K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Austral. Math. Soc. Ser. A 10 (1969), 445-450. Zbl0207.08302
- [8] Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65-96 (in Russian); English transl.: Math. USSR-sb. 187 (1996), 1319-1348.
- [9] E. Reyssat, Mesures de transcendance de nombres liés aux fonctions exponentielles et elliptiques, C. R. Acad. Sci. Paris Sér. A 285 (1977), 977-980. Zbl0375.10019
- [10] E. Reyssat, Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielles, Bull. Soc. Math. France 108 (1980), 47-79. Zbl0432.10018
- [11] T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113 (1937), 1-13. Zbl62.0186.02
- [12] A. B. Shidlovski, Transcendental Numbers, Nauka, Moscow, 1987 (in Russian); English transl.: de Gruyter, Berlin, 1989.
- [13] M. Waldschmidt, Transcendence measures of exponentials and logarithms of algebraic numbers, J. Austral. Math. Soc. Ser. A 25 (1978), 445-465. Zbl0388.10022