The exceptional set of Goldbach numbers (II)
Acta Arithmetica (2000)
- Volume: 92, Issue: 1, page 71-88
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. R. Chen, The exceptional set of Goldbach numbers (II), Sci. Sinica 26 (1983), 714-731. Zbl0513.10045
- [2] J. R. Chen and J. M. Liu, The exceptional set of Goldbach numbers (III), Chinese Quart. J. Math. 4 (1989), 1-15.
- [3] J. R. Chen and C. D. Pan, The exceptional set of Goldbach numbers, Sci. Sinica 23 (1980), 416-430. Zbl0439.10034
- [4] D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265-338. Zbl0739.11033
- [5] H. Z. Li, Zero-free regions for Dirichlet L-functions, Quart. J. Math. Oxford Ser. (2) 50 (1999), 13-23. Zbl0934.11042
- [6] H. Z. Li, The exceptional set of Goldbach numbers, ibid. 50 (1999).
- [7] J. Y. Liu, M. C. Liu and T. Z. Wang, The number of powers of 2 in a representation of large even integers (II), Sci. China Ser. A 41 (1998), 1255-1271. Zbl0924.11086
- [8] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370. Zbl0301.10043
- [9] W. Wang, On zero distribution of Dirichlet's L-functions, J. Shandong Univ. 21 (1986), 1-13 (in Chinese). Zbl0615.10050