On the hybrid mean value of Dedekind sums and Hurwitz zeta-function
Acta Arithmetica (2000)
- Volume: 92, Issue: 2, page 141-152
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
- [2] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, New York, 1976.
- [3] L. Carlitz, The reciprocity theorem of Dedekind sums, Pacific J. Math. 3 (1953), 513-522. Zbl0057.03701
- [4] J. B. Conrey, E. Fransen, R. Klein and C. Scott, Mean values of Dedekind sums, J. Number Theory 56 (1996), 214-226. Zbl0851.11028
- [5] L. J. Mordell, The reciprocity formula for Dedekind sums, Amer. J. Math. 73 (1951), 593-598. Zbl0042.27401
- [6] H. Rademacher, On the transformation of log η(τ), J. Indian Math. Soc. 19 (1955), 25-30.
- [7] H. Rademacher, Dedekind Sums, Carus Math. Monographs, Math. Assoc. Amer., Washington, DC, 1972.
- [8] H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), 1-3. Zbl0464.10030
- [9] W. P. Zhang, On the mean values of Dedekind sums, J. Théor. Nombres Bordeaux 8 (1996), 429-442. Zbl0871.11033