Estimates for complete multiple exponential sums

J. H. Loxton

Acta Arithmetica (2000)

  • Volume: 92, Issue: 3, page 277-290
  • ISSN: 0065-1036

How to cite


J. H. Loxton. "Estimates for complete multiple exponential sums." Acta Arithmetica 92.3 (2000): 277-290. <>.

author = {J. H. Loxton},
journal = {Acta Arithmetica},
keywords = {complete multiple exponential sums; Weil conjectures; Newton polyhedron},
language = {eng},
number = {3},
pages = {277-290},
title = {Estimates for complete multiple exponential sums},
url = {},
volume = {92},
year = {2000},

AU - J. H. Loxton
TI - Estimates for complete multiple exponential sums
JO - Acta Arithmetica
PY - 2000
VL - 92
IS - 3
SP - 277
EP - 290
LA - eng
KW - complete multiple exponential sums; Weil conjectures; Newton polyhedron
UR -
ER -


  1. G. I. Arkhipov, A. A. Karatsuba and V. N. Chubarikov, Theory of Multiple Exponential Sums, Moscow, 1987 (in Russian). Zbl0638.10037
  2. K. A. Atan and J. H. Loxton, Newton polyhedra and solutions of congruences, in: Diophantine Analysis, J. H. Loxton and A. J. van der Poorten (eds.), London Math. Soc. Lecture Note Ser. 109, Cambridge, 1986, 67-82. Zbl0601.12023
  3. V. N. Chubarikov, Multiple rational trigonometric sums and multiple integrals, Mat. Zametki 20 (1976), 61-68 (in Russian); English transl.: Math. Notes 20 (1976). Zbl0353.10028
  4. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307. 
  5. G. H. Hardy and J. E. Littlewood, A new solution of Waring's problem, Quart. J. Math. 48 (1919), 272-293. Zbl47.0114.01
  6. S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser. 126, Cambridge, 1991. Zbl0713.11001
  7. W. K. A. Loh, Exponential sums on reduced residue systems, Canad. Math. Bull. 41 (1997), 187-195. Zbl0944.11025
  8. J. H. Loxton and R. A. Smith, Estimates for multiple exponential sums, J. Austral. Math. Soc. 33 (1982), 125-134. Zbl0493.10041
  9. J. H. Loxton and R. C. Vaughan, The estimation of complete exponential sums, Canad. Math. Bull. 28 (1985), 440-454. Zbl0575.10033
  10. E. C. Titchmarsh, On Epstein's zeta function, Proc. London Math. Soc. (2) 36 (1934), 485-500. Zbl0008.30101
  11. R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tracts in Math. 80, Cambridge, 1981. 
  12. H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352. Zbl46.0278.06

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.