-schemes and toric varieties.
Nous étudions d’abord le foncteur cohomologique local. Ensuite, nous introduisons la notion de -modules arithmétiques surcohérents. Nous prouvons que les - isocristaux unités sont surcohérents et surtout que la surcohérence est stable par images directes, images inverses extraordinaires et foncteurs cohomologiques locaux. On obtient, via cette stabilité, une formule cohomologique pour les fonctions associées aux complexes duaux de complexes surcohérents. Celle-ci étend celle d’Étesse et Le Stum...
On calcule par des méthodes arithmétiques le groupe de Brauer non ramifié des espaces homogènes de groupes algébriques linéaires sur différents corps. Les formules obtenues font intervenir l’hypercohomologie de complexes de groupes de type multiplicatif.
Soit un entier . Pour un nombre premier on note l’extension maximale non ramifiée de . Supposons que divise exactement . Alors, en utilisant les travaux de Carayol et la théorie du corps de classes local, on détermine une extension de sur laquelle la jacobienne de la courbe modulaire de admet une réduction semi-stable, puis on donne une estimation de son degré.
Let be a fixed algebraic variety defined by polynomials in variables with integer coefficients. We show that there exists a constant such that for almost all primes for all but at most points on the reduction of modulo at least one of the components has a large multiplicative order. This generalises several previous results and is a step towards a conjecture of B. Poonen.