The rational points close to a curve II
Acta Arithmetica (2000)
- Volume: 93, Issue: 3, page 201-219
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] M. Filaseta and O. Trifonov, The distribution of fractional parts with applications to gap results in number theory, Proc. London Math. Soc. (3) 73 (1996), 241-278. Zbl0867.11053
- [2] H. Halberstam and K. F. Roth, On the gaps between consecutive k-free numbers, J. London Math. Soc. 26 (1951), 268-273. Zbl0043.04901
- [3] M. N. Huxley, The integer points close to a curve, Mathematika 36 (1989), 198-215. Zbl0659.10032
- [4] M. N. Huxley, The rational points close to a curve, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Fis. Mat. (4) 21 (1994), 357-375. Zbl0827.11046
- [5] M. N. Huxley, Moments of differences between square-free numbers, in: Sieve Methods, Exponential Sums and their Applications in Number Theory, G. R. H. Greaves, G. Harman and M. N. Huxley (eds.), Cambridge Univ. Press, 1996, 187-204.
- [6] M. N. Huxley et P. Sargos, Points entiers au voisinage d’une courbe plane de classe , Acta Arith. 69 (1995), 359-366.
- [7] H. P. F. Swinnerton-Dyer, The number of lattice points on a convex curve, J. Number Theory 6 (1974), 128-135. Zbl0285.10020