The rational points close to a curve II

M. N. Huxley

Acta Arithmetica (2000)

  • Volume: 93, Issue: 3, page 201-219
  • ISSN: 0065-1036

How to cite

top

M. N. Huxley. "The rational points close to a curve II." Acta Arithmetica 93.3 (2000): 201-219. <http://eudml.org/doc/207411>.

@article{M2000,
author = {M. N. Huxley},
journal = {Acta Arithmetica},
keywords = {distribution of gaps between -free numbers; rational point; curve},
language = {eng},
number = {3},
pages = {201-219},
title = {The rational points close to a curve II},
url = {http://eudml.org/doc/207411},
volume = {93},
year = {2000},
}

TY - JOUR
AU - M. N. Huxley
TI - The rational points close to a curve II
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 3
SP - 201
EP - 219
LA - eng
KW - distribution of gaps between -free numbers; rational point; curve
UR - http://eudml.org/doc/207411
ER -

References

top
  1. [1] M. Filaseta and O. Trifonov, The distribution of fractional parts with applications to gap results in number theory, Proc. London Math. Soc. (3) 73 (1996), 241-278. Zbl0867.11053
  2. [2] H. Halberstam and K. F. Roth, On the gaps between consecutive k-free numbers, J. London Math. Soc. 26 (1951), 268-273. Zbl0043.04901
  3. [3] M. N. Huxley, The integer points close to a curve, Mathematika 36 (1989), 198-215. Zbl0659.10032
  4. [4] M. N. Huxley, The rational points close to a curve, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Fis. Mat. (4) 21 (1994), 357-375. Zbl0827.11046
  5. [5] M. N. Huxley, Moments of differences between square-free numbers, in: Sieve Methods, Exponential Sums and their Applications in Number Theory, G. R. H. Greaves, G. Harman and M. N. Huxley (eds.), Cambridge Univ. Press, 1996, 187-204. 
  6. [6] M. N. Huxley et P. Sargos, Points entiers au voisinage d’une courbe plane de classe C n , Acta Arith. 69 (1995), 359-366. 
  7. [7] H. P. F. Swinnerton-Dyer, The number of lattice points on a convex curve, J. Number Theory 6 (1974), 128-135. Zbl0285.10020

NotesEmbed ?

top

You must be logged in to post comments.