Universal normal bases for the abelian closure of the field of rational numbers

Dirk Hachenberger

Acta Arithmetica (2000)

  • Volume: 93, Issue: 4, page 329-341
  • ISSN: 0065-1036

How to cite

top

Dirk Hachenberger. "Universal normal bases for the abelian closure of the field of rational numbers." Acta Arithmetica 93.4 (2000): 329-341. <http://eudml.org/doc/207417>.

@article{DirkHachenberger2000,
author = {Dirk Hachenberger},
journal = {Acta Arithmetica},
keywords = {cyclotomic field; abelian closure; normal basis/element; universally normal basis/element; completely normal basis/element; trace-compatible sequence; normal basis},
language = {eng},
number = {4},
pages = {329-341},
title = {Universal normal bases for the abelian closure of the field of rational numbers},
url = {http://eudml.org/doc/207417},
volume = {93},
year = {2000},
}

TY - JOUR
AU - Dirk Hachenberger
TI - Universal normal bases for the abelian closure of the field of rational numbers
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 4
SP - 329
EP - 341
LA - eng
KW - cyclotomic field; abelian closure; normal basis/element; universally normal basis/element; completely normal basis/element; trace-compatible sequence; normal basis
UR - http://eudml.org/doc/207417
ER -

References

top
  1. [BlJo1] D. Blessenohl und K. Johnsen, Eine Verschärfung des Satzes von der Normalbasis, J. Algebra 103 (1986), 141-159. Zbl0607.12011
  2. [BlJo2] D. Blessenohl und K. Johnsen, Stabile Teilkörper galoisscher Erweiterungen und ein Problem von C. Faith, Arch. Math. (Basel) 56 (1991), 245-253. Zbl0706.12003
  3. [Bo] W. Bosma, Canonical bases for cyclotomic fields, Appl. Algebra Engrg. Comm. Comput. 1 (1990), 125-134. Zbl0741.11041
  4. [Br] T. Breuer, Integral bases for subfields of cyclotomic fields, ibid. 8 (1997), 279-289. Zbl0879.11057
  5. [Fa] C. C. Faith, Extensions of normal bases and completely basic fields, Trans. Amer. Math. Soc. 85 (1957), 406-427. Zbl0081.03502
  6. [Ha] D. Hachenberger, Finite Fields: Normal Bases and Completely Free Elements, Kluwer, Boston, 1997. Zbl0864.11065
  7. [Jo] K. Johnsen, Lineare Abhängigkeiten von Einheitswurzeln, Elem. Math. 40 (1985), 57-59. 
  8. [Le] H. W. Lenstra, Jr., A normal basis theorem for infinite Galois extensions, Indag. Math. 47 (1985), 221-228. Zbl0569.12013
  9. [Ri] P. Ribenboim, Algebraic Numbers, Pure Appl. Math. 27, Wiley, New York, 1972. 
  10. [Sche] A. Scheerhorn, Trace- and norm-compatible extensions of finite fields, Appl. Algebra Engrg. Comm. Comput. 3 (1992), 435-447. 
  11. [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, Berlin, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.