Completely normal elements in some finite abelian extensions

Ja Koo; Dong Shin

Open Mathematics (2013)

  • Volume: 11, Issue: 10, page 1725-1731
  • ISSN: 2391-5455

Abstract

top
We present some completely normal elements in the maximal real subfields of cyclotomic fields over the field of rational numbers, relying on the criterion for normal element developed in [Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116]. And, we further find completely normal elements in certain abelian extensions of modular function fields in terms of Siegel functions.

How to cite

top

Ja Koo, and Dong Shin. "Completely normal elements in some finite abelian extensions." Open Mathematics 11.10 (2013): 1725-1731. <http://eudml.org/doc/269002>.

@article{JaKoo2013,
abstract = {We present some completely normal elements in the maximal real subfields of cyclotomic fields over the field of rational numbers, relying on the criterion for normal element developed in [Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116]. And, we further find completely normal elements in certain abelian extensions of modular function fields in terms of Siegel functions.},
author = {Ja Koo, Dong Shin},
journal = {Open Mathematics},
keywords = {Cyclotomic extensions; Modular functions; Normal bases; cyclotomic extensions; modular functions; normal bases},
language = {eng},
number = {10},
pages = {1725-1731},
title = {Completely normal elements in some finite abelian extensions},
url = {http://eudml.org/doc/269002},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Ja Koo
AU - Dong Shin
TI - Completely normal elements in some finite abelian extensions
JO - Open Mathematics
PY - 2013
VL - 11
IS - 10
SP - 1725
EP - 1731
AB - We present some completely normal elements in the maximal real subfields of cyclotomic fields over the field of rational numbers, relying on the criterion for normal element developed in [Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116]. And, we further find completely normal elements in certain abelian extensions of modular function fields in terms of Siegel functions.
LA - eng
KW - Cyclotomic extensions; Modular functions; Normal bases; cyclotomic extensions; modular functions; normal bases
UR - http://eudml.org/doc/269002
ER -

References

top
  1. [1] Blessenohl D., Johnsen K., Eine Verschärfung des Satzes von der Normalbasis, J. Algebra, 1986, 103(1), 141–159 http://dx.doi.org/10.1016/0021-8693(86)90174-2[Crossref] 
  2. [2] Chowla S., The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory, 1970, 2(1), 120–123 http://dx.doi.org/10.1016/0022-314X(70)90012-0[Crossref] 
  3. [3] Faith C.C., Extensions of normal bases and completely basic fields, Trans. Amer. Math. Soc., 1957, 85(2), 406–427 http://dx.doi.org/10.1090/S0002-9947-1957-0087632-7[Crossref] 
  4. [4] Hachenberger D., Finite Fields, Kluwer Internat. Ser. Engrg. Comput. Sci., 390, Kluwer, Boston, 1997 
  5. [5] Hachenberger D., Universal normal bases for the abelian closure of the field of rational numbers, Acta Arith., 2000, 93(4), 329–341 Zbl0956.11024
  6. [6] Janusz G.J., Algebraic Number Fields, 2nd ed., Grad. Stud. Math., 7, American Mathematical Society, Providence, 1996 Zbl0854.11001
  7. [7] Jung H.Y., Koo J.K., Shin D.H., Normal bases of ray class fields over imaginary quadratic fields, Math. Z., 2012, 271(1–2), 109–116 http://dx.doi.org/10.1007/s00209-011-0854-2[Crossref][WoS] Zbl1279.11061
  8. [8] Kawamoto F., On normal integral bases, Tokyo J. Math., 1984, 7(1), 221–231 http://dx.doi.org/10.3836/tjm/1270153005[Crossref] 
  9. [9] Kubert D., Lang S., Modular Units, Grundlehren Math. Wiss., 244, Spinger, New York-Berlin, 1981 
  10. [10] Lang S., Elliptic Functions, 2nd ed., Grad. Texts in Math., 112, Spinger, New York, 1987 http://dx.doi.org/10.1007/978-1-4612-4752-4[Crossref] 
  11. [11] Okada T., On an extension of a theorem of S. Chowla, Acta Arith., 1980/81, 38(4), 341–345 [WoS] 
  12. [12] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, 11, Iwanami Shoten/Princeton University Press, Tokyo/Princeton, 1971 Zbl0221.10029
  13. [13] van der Waerden B.L., Algebra I, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4684-9999-5[Crossref] 
  14. [14] Washington L.C., Introduction to Cyclotomic Fields, Grad. Texts in Math., 83, Springer, New York, 1982 http://dx.doi.org/10.1007/978-1-4684-0133-2[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.