The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II

Wladimir de Azevedo Pribitkin

Acta Arithmetica (2000)

  • Volume: 93, Issue: 4, page 343-358
  • ISSN: 0065-1036

How to cite

top

Wladimir de Azevedo Pribitkin. "The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II." Acta Arithmetica 93.4 (2000): 343-358. <http://eudml.org/doc/207418>.

@article{WladimirdeAzevedoPribitkin2000,
author = {Wladimir de Azevedo Pribitkin},
journal = {Acta Arithmetica},
language = {eng},
number = {4},
pages = {343-358},
title = {The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II},
url = {http://eudml.org/doc/207418},
volume = {93},
year = {2000},
}

TY - JOUR
AU - Wladimir de Azevedo Pribitkin
TI - The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 4
SP - 343
EP - 358
LA - eng
UR - http://eudml.org/doc/207418
ER -

References

top
  1. [1] G. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998. Zbl0996.11002
  2. [2] D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243-250. Zbl0507.10029
  3. [3] M. Knopp, On the Fourier coefficients of small positive powers of θ(τ), ibid. 85 (1986), 165-183. 
  4. [4] M. Knopp, On the Fourier coefficients of cusp forms having small positive weight, in: Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 111-127. 
  5. [5] D. Niebur, Automorphic integrals of arbitrary positive dimension and Poincaré series, Doctoral Dissertation, University of Wisconsin, Madison, 1968. 
  6. [6] D. Niebur, Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373-385. Zbl0306.30023
  7. [7] P. Pasles and W. Pribitkin, A generalization of the Lipschitz summation formula and some applications, to appear. 
  8. [8] W. Pribitkin, The Fourier coefficients of modular forms and modular integrals having small positive weight, Doctoral Dissertation, Temple University, Philadelphia, 1995. Zbl1161.11336
  9. [9] W. Pribitkin, The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I, Acta Arith. 91 (1999), 291-309. Zbl0944.11014
  10. [10] H. Rademacher and H. S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. 39 (1938), 433-462. Zbl0019.02201
  11. [11] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337. Zbl0152.07705
  12. [12] A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965, 1-15. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.