The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II
Acta Arithmetica (2000)
- Volume: 93, Issue: 4, page 343-358
- ISSN: 0065-1036
Access Full Article
topHow to cite
topWladimir de Azevedo Pribitkin. "The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II." Acta Arithmetica 93.4 (2000): 343-358. <http://eudml.org/doc/207418>.
@article{WladimirdeAzevedoPribitkin2000,
author = {Wladimir de Azevedo Pribitkin},
journal = {Acta Arithmetica},
language = {eng},
number = {4},
pages = {343-358},
title = {The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II},
url = {http://eudml.org/doc/207418},
volume = {93},
year = {2000},
}
TY - JOUR
AU - Wladimir de Azevedo Pribitkin
TI - The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 4
SP - 343
EP - 358
LA - eng
UR - http://eudml.org/doc/207418
ER -
References
top- [1] G. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998. Zbl0996.11002
- [2] D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243-250. Zbl0507.10029
- [3] M. Knopp, On the Fourier coefficients of small positive powers of θ(τ), ibid. 85 (1986), 165-183.
- [4] M. Knopp, On the Fourier coefficients of cusp forms having small positive weight, in: Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 111-127.
- [5] D. Niebur, Automorphic integrals of arbitrary positive dimension and Poincaré series, Doctoral Dissertation, University of Wisconsin, Madison, 1968.
- [6] D. Niebur, Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373-385. Zbl0306.30023
- [7] P. Pasles and W. Pribitkin, A generalization of the Lipschitz summation formula and some applications, to appear.
- [8] W. Pribitkin, The Fourier coefficients of modular forms and modular integrals having small positive weight, Doctoral Dissertation, Temple University, Philadelphia, 1995. Zbl1161.11336
- [9] W. Pribitkin, The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I, Acta Arith. 91 (1999), 291-309. Zbl0944.11014
- [10] H. Rademacher and H. S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. 39 (1938), 433-462. Zbl0019.02201
- [11] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337. Zbl0152.07705
- [12] A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965, 1-15.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.