# The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II

Acta Arithmetica (2000)

- Volume: 93, Issue: 4, page 343-358
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topWladimir de Azevedo Pribitkin. "The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II." Acta Arithmetica 93.4 (2000): 343-358. <http://eudml.org/doc/207418>.

@article{WladimirdeAzevedoPribitkin2000,

author = {Wladimir de Azevedo Pribitkin},

journal = {Acta Arithmetica},

language = {eng},

number = {4},

pages = {343-358},

title = {The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II},

url = {http://eudml.org/doc/207418},

volume = {93},

year = {2000},

}

TY - JOUR

AU - Wladimir de Azevedo Pribitkin

TI - The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II

JO - Acta Arithmetica

PY - 2000

VL - 93

IS - 4

SP - 343

EP - 358

LA - eng

UR - http://eudml.org/doc/207418

ER -

## References

top- [1] G. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998. Zbl0996.11002
- [2] D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243-250. Zbl0507.10029
- [3] M. Knopp, On the Fourier coefficients of small positive powers of θ(τ), ibid. 85 (1986), 165-183.
- [4] M. Knopp, On the Fourier coefficients of cusp forms having small positive weight, in: Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 111-127.
- [5] D. Niebur, Automorphic integrals of arbitrary positive dimension and Poincaré series, Doctoral Dissertation, University of Wisconsin, Madison, 1968.
- [6] D. Niebur, Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373-385. Zbl0306.30023
- [7] P. Pasles and W. Pribitkin, A generalization of the Lipschitz summation formula and some applications, to appear.
- [8] W. Pribitkin, The Fourier coefficients of modular forms and modular integrals having small positive weight, Doctoral Dissertation, Temple University, Philadelphia, 1995. Zbl1161.11336
- [9] W. Pribitkin, The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I, Acta Arith. 91 (1999), 291-309. Zbl0944.11014
- [10] H. Rademacher and H. S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. 39 (1938), 433-462. Zbl0019.02201
- [11] W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337. Zbl0152.07705
- [12] A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965, 1-15.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.