Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators

Harald Niederreiter; Arne Winterhof

Acta Arithmetica (2000)

  • Volume: 93, Issue: 4, page 387-399
  • ISSN: 0065-1036

How to cite

top

Harald Niederreiter, and Arne Winterhof. "Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators." Acta Arithmetica 93.4 (2000): 387-399. <http://eudml.org/doc/207421>.

@article{HaraldNiederreiter2000,
author = {Harald Niederreiter, Arne Winterhof},
journal = {Acta Arithmetica},
keywords = {finite field; upper bounds; exponential sum; sequences of digital explicit inversive pseudorandom numbers; explicit inversive pseudorandom vectors},
language = {eng},
number = {4},
pages = {387-399},
title = {Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators},
url = {http://eudml.org/doc/207421},
volume = {93},
year = {2000},
}

TY - JOUR
AU - Harald Niederreiter
AU - Arne Winterhof
TI - Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 4
SP - 387
EP - 399
LA - eng
KW - finite field; upper bounds; exponential sum; sequences of digital explicit inversive pseudorandom numbers; explicit inversive pseudorandom vectors
UR - http://eudml.org/doc/207421
ER -

References

top
  1. [1] T. Cochrane, On a trigonometric inequality of Vinogradov, J. Number Theory 27 (1987), 9-16. Zbl0629.10030
  2. [2] J. Eichenauer-Herrmann, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993), 375-384. Zbl0795.65002
  3. [3] P. Hellekalek, General discrepancy estimates: the Walsh function system, Acta Arith. 67 (1994), 209-218. Zbl0805.11055
  4. [4] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge Univ. Press, Cambridge, 1994. Zbl0820.11072
  5. [5] C. J. Moreno and O. Moreno, Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc. 111 (1991), 523-531. Zbl0716.94010
  6. [6] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992. 
  7. [7] H. Niederreiter, Pseudorandom vector generation by the inversive method, ACM Trans. Modeling and Computer Simulation 4 (1994), 191-212. Zbl0847.11039
  8. [8] H. Niederreiter, Improved bounds in the multiple-recursive matrix method for pseudorandom number and vector generation, Finite Fields Appl. 2 (1996), 225-240. Zbl0893.11031
  9. [9] H. Niederreiter and I. E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period, Math. Comp., to appear. Zbl0983.11048
  10. [10] H. Niederreiter and I. E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers, Finite Fields Appl. 5 (1999), 246-253. Zbl0942.11037
  11. [11] H. Niederreiter and I. E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods, Appl. Algebra Engrg. Comm. Comput., to appear. Zbl0999.11040
  12. [12] A. Winterhof, On the distribution of powers in finite fields, Finite Fields Appl. 4 (1998), 43-54. Zbl0910.11055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.