# Admissible disturbance sets for discrete perturbed systems

Jamal Bouyaghroumni; Abdelhaq El Jai; Mostafa Rachik

International Journal of Applied Mathematics and Computer Science (2001)

- Volume: 11, Issue: 2, page 349-367
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topBouyaghroumni, Jamal, El Jai, Abdelhaq, and Rachik, Mostafa. "Admissible disturbance sets for discrete perturbed systems." International Journal of Applied Mathematics and Computer Science 11.2 (2001): 349-367. <http://eudml.org/doc/207510>.

@article{Bouyaghroumni2001,

abstract = {We consider a discrete disturbed system given by the difference bilinear equation where are disturbances which excite the system in a linear and a bilinear form. We assume that the system is augmented with the output function. Let be a tolerance index on the output. The disturbance is said to be -admissible if, where is the output signal associated with the case of an uninfected system. The set of all -admissible disturbances is the admissible set. The characterization of is investigated and numerical simulations are given.},

author = {Bouyaghroumni, Jamal, El Jai, Abdelhaq, Rachik, Mostafa},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {bilinear disturbance; discrete systems; admissibility index; bilinear systems; discrete-time; perturbations},

language = {eng},

number = {2},

pages = {349-367},

title = {Admissible disturbance sets for discrete perturbed systems},

url = {http://eudml.org/doc/207510},

volume = {11},

year = {2001},

}

TY - JOUR

AU - Bouyaghroumni, Jamal

AU - El Jai, Abdelhaq

AU - Rachik, Mostafa

TI - Admissible disturbance sets for discrete perturbed systems

JO - International Journal of Applied Mathematics and Computer Science

PY - 2001

VL - 11

IS - 2

SP - 349

EP - 367

AB - We consider a discrete disturbed system given by the difference bilinear equation where are disturbances which excite the system in a linear and a bilinear form. We assume that the system is augmented with the output function. Let be a tolerance index on the output. The disturbance is said to be -admissible if, where is the output signal associated with the case of an uninfected system. The set of all -admissible disturbances is the admissible set. The characterization of is investigated and numerical simulations are given.

LA - eng

KW - bilinear disturbance; discrete systems; admissibility index; bilinear systems; discrete-time; perturbations

UR - http://eudml.org/doc/207510

ER -

## References

top- Afifi L. and ElL Jai A. (1994): Strategic sensors and spy sensors. -Appl. Math. Comp. Sci., Vol.4, No.4, pp.553-573. Zbl0823.93011
- Balakrishnan A.V. (1976): Applied Functional Analysis. - London: Springer. Zbl0333.93051
- Bensoussan A. and Viot M. (1975): Optimal control of stochastic linear distributed parameter systems. - SIAM J. Control, Vol.13, pp.904-926. Zbl0276.93058
- Curtain R.F. and Pritchard A.J. (1978): Infinite Dimensional Linear Systems Theory. - Berlin: Springer. Zbl0389.93001
- Curtain R.F. and Zwart H.J. (1995): An Introduction to Infinite-Dimensional Linear Systems Theory. -New York: Springer. Zbl0839.93001
- Francis D. (1987): A Course in H_∞-Control Theory. - Berlin: Springer Verlag.
- Kitamura S. and Nakagiri S. (1977): Identifiability of spatially varying and constant parameters in distributed systems of parabolic type. - SIAM. J. Contr. Optim., Vol.15, No.5. Zbl0354.93020
- Lions J.L. (1988): Sur les sentinelles des systèmes distribues. - C.R.A.S. Paris, T.307. Zbl0664.93041
- Lions J.L. (1990): Furtivité et sentinelles pour les systèmes distribués à donnees in complètes. -C.R.A.S. Paris. Zbl0723.93036
- Rachik M., Labriji E., Abkari A. and Bouyaghroumni J. (2000): Infected discrete linear systems: On the admissible sources. -Optimization, Vol.00, pp.1-19. Zbl0978.93044
- Rachik M., Abdelhak A. and Karrakchou J. (1997): Discrete systems with delays in state, control and observation: The maximal output sets with state and control constraints. - Optimization, Vol.42, pp.169-183. Zbl0892.93045
- Suzuki T. and Murayama R. (1980): A unique theorem in an identification problem for coefficient of parabolic equations. - Proc. Japan Acad. Ser. A. Math. Sc., Vol.56, pp.259-263. Zbl0473.35076
- Wonham N.M. (1968): On the separation principle of stochastic control. - SIAM J. Contr., Vol.6, pp. 312-326. Zbl0164.19101
- Zabczyk J. (1995): Mathematical Control Theory: An Introduction, Systems and Control:Fundations and Applications. -Birkhauser.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.