Admissible disturbance sets for discrete perturbed systems
Jamal Bouyaghroumni; Abdelhaq El Jai; Mostafa Rachik
International Journal of Applied Mathematics and Computer Science (2001)
- Volume: 11, Issue: 2, page 349-367
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topBouyaghroumni, Jamal, El Jai, Abdelhaq, and Rachik, Mostafa. "Admissible disturbance sets for discrete perturbed systems." International Journal of Applied Mathematics and Computer Science 11.2 (2001): 349-367. <http://eudml.org/doc/207510>.
@article{Bouyaghroumni2001,
abstract = {We consider a discrete disturbed system given by the difference bilinear equation where are disturbances which excite the system in a linear and a bilinear form. We assume that the system is augmented with the output function. Let be a tolerance index on the output. The disturbance is said to be -admissible if, where is the output signal associated with the case of an uninfected system. The set of all -admissible disturbances is the admissible set. The characterization of is investigated and numerical simulations are given.},
author = {Bouyaghroumni, Jamal, El Jai, Abdelhaq, Rachik, Mostafa},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {bilinear disturbance; discrete systems; admissibility index; bilinear systems; discrete-time; perturbations},
language = {eng},
number = {2},
pages = {349-367},
title = {Admissible disturbance sets for discrete perturbed systems},
url = {http://eudml.org/doc/207510},
volume = {11},
year = {2001},
}
TY - JOUR
AU - Bouyaghroumni, Jamal
AU - El Jai, Abdelhaq
AU - Rachik, Mostafa
TI - Admissible disturbance sets for discrete perturbed systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 2
SP - 349
EP - 367
AB - We consider a discrete disturbed system given by the difference bilinear equation where are disturbances which excite the system in a linear and a bilinear form. We assume that the system is augmented with the output function. Let be a tolerance index on the output. The disturbance is said to be -admissible if, where is the output signal associated with the case of an uninfected system. The set of all -admissible disturbances is the admissible set. The characterization of is investigated and numerical simulations are given.
LA - eng
KW - bilinear disturbance; discrete systems; admissibility index; bilinear systems; discrete-time; perturbations
UR - http://eudml.org/doc/207510
ER -
References
top- Afifi L. and ElL Jai A. (1994): Strategic sensors and spy sensors. -Appl. Math. Comp. Sci., Vol.4, No.4, pp.553-573. Zbl0823.93011
- Balakrishnan A.V. (1976): Applied Functional Analysis. - London: Springer. Zbl0333.93051
- Bensoussan A. and Viot M. (1975): Optimal control of stochastic linear distributed parameter systems. - SIAM J. Control, Vol.13, pp.904-926. Zbl0276.93058
- Curtain R.F. and Pritchard A.J. (1978): Infinite Dimensional Linear Systems Theory. - Berlin: Springer. Zbl0389.93001
- Curtain R.F. and Zwart H.J. (1995): An Introduction to Infinite-Dimensional Linear Systems Theory. -New York: Springer. Zbl0839.93001
- Francis D. (1987): A Course in H_∞-Control Theory. - Berlin: Springer Verlag.
- Kitamura S. and Nakagiri S. (1977): Identifiability of spatially varying and constant parameters in distributed systems of parabolic type. - SIAM. J. Contr. Optim., Vol.15, No.5. Zbl0354.93020
- Lions J.L. (1988): Sur les sentinelles des systèmes distribues. - C.R.A.S. Paris, T.307. Zbl0664.93041
- Lions J.L. (1990): Furtivité et sentinelles pour les systèmes distribués à donnees in complètes. -C.R.A.S. Paris. Zbl0723.93036
- Rachik M., Labriji E., Abkari A. and Bouyaghroumni J. (2000): Infected discrete linear systems: On the admissible sources. -Optimization, Vol.00, pp.1-19. Zbl0978.93044
- Rachik M., Abdelhak A. and Karrakchou J. (1997): Discrete systems with delays in state, control and observation: The maximal output sets with state and control constraints. - Optimization, Vol.42, pp.169-183. Zbl0892.93045
- Suzuki T. and Murayama R. (1980): A unique theorem in an identification problem for coefficient of parabolic equations. - Proc. Japan Acad. Ser. A. Math. Sc., Vol.56, pp.259-263. Zbl0473.35076
- Wonham N.M. (1968): On the separation principle of stochastic control. - SIAM J. Contr., Vol.6, pp. 312-326. Zbl0164.19101
- Zabczyk J. (1995): Mathematical Control Theory: An Introduction, Systems and Control:Fundations and Applications. -Birkhauser.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.