Approximation of large-scale dynamical systems: an overview

Athanasios Antoulas; Dan Sorensen

International Journal of Applied Mathematics and Computer Science (2001)

  • Volume: 11, Issue: 5, page 1093-1121
  • ISSN: 1641-876X

Abstract

top
In this paper we review the state of affairs in the area of approximation of large-scale systems. We distinguish three basic categories, namely the SVD-based, the Krylov-based and the SVD-Krylov-based approximation methods. The first two were developed independently of each other and have distinct sets of attributes and drawbacks. The third approach seeks to combine the best attributes of the first two.

How to cite

top

Antoulas, Athanasios, and Sorensen, Dan. "Approximation of large-scale dynamical systems: an overview." International Journal of Applied Mathematics and Computer Science 11.5 (2001): 1093-1121. <http://eudml.org/doc/207547>.

@article{Antoulas2001,
abstract = {In this paper we review the state of affairs in the area of approximation of large-scale systems. We distinguish three basic categories, namely the SVD-based, the Krylov-based and the SVD-Krylov-based approximation methods. The first two were developed independently of each other and have distinct sets of attributes and drawbacks. The third approach seeks to combine the best attributes of the first two.},
author = {Antoulas, Athanasios, Sorensen, Dan},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {SVD; Krylov; model reduction; Hankel; balancing; singular value decomposition; Krylov-based approximation; approximation of large-scale systems},
language = {eng},
number = {5},
pages = {1093-1121},
title = {Approximation of large-scale dynamical systems: an overview},
url = {http://eudml.org/doc/207547},
volume = {11},
year = {2001},
}

TY - JOUR
AU - Antoulas, Athanasios
AU - Sorensen, Dan
TI - Approximation of large-scale dynamical systems: an overview
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 5
SP - 1093
EP - 1121
AB - In this paper we review the state of affairs in the area of approximation of large-scale systems. We distinguish three basic categories, namely the SVD-based, the Krylov-based and the SVD-Krylov-based approximation methods. The first two were developed independently of each other and have distinct sets of attributes and drawbacks. The third approach seeks to combine the best attributes of the first two.
LA - eng
KW - SVD; Krylov; model reduction; Hankel; balancing; singular value decomposition; Krylov-based approximation; approximation of large-scale systems
UR - http://eudml.org/doc/207547
ER -

References

top
  1. Adamjan V.M., Arov D.Z. and Krein M.G. (1971): Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem. — Math. USSR Sbornik, Vol.15, pp.31–73. Zbl0248.47019
  2. Adamjan V.M., Arov D.Z. and Krein M.G. (1978): Infinite block Hankel matrices and related extension problems. — Amer. Math. Soc. Trans., Vol.111, pp.133–156. 
  3. Antoulas A.C. (1993): Recursive modeling of discrete-time series, In: IMA volume on Linear Algebra for Control (P. Van Dooren and B.F. Wyman, Eds.). — pp. 1–22. Zbl0811.93005
  4. Antoulas A.C. (1998): Approximation of linear operators in the 2-norm. — Lin. Alg. Applicns., Vol.278, pp.309–316. Zbl0934.15031
  5. Antoulas A.C. (1999a): Approximation of linear dynamical systems, In: Wiley Encyclopedia of Electrical and Electronics Engineering, Vol.11 (J.G. Webster, Ed.). — pp.403–422. 
  6. Antoulas A.C. (1999b): On eigenvalues and singular values of linear dynamical systems. — Proc. XVI Housholder Symp., Chateau Whistler. 
  7. Antoulas A.C. (2002): Approximation of Large-Scale Dynamical Systems. — Philadelphia: SIAM Press (to appear). 
  8. Antoulas A.C. and Anderson B.D.O. (1989): On the problem of stable rational interpolation. — Lin. Alg. Applicns., Vol.122–124, pp.301–329. Zbl0693.41007
  9. Antoulas A.C. and Bishop R.H. (1987): Continued-fraction decomposition of linear systems in the state space. — Syst. Contr. Lett., Vol.9, pp.43–53. Zbl0627.93013
  10. Antoulas A.C. and Sorensen D.C. (2001a): Projection methods for balanced model reduction. — Techn. Rep. ECE-CAAM Depts., Rice University. 
  11. Antoulas A.C. and Van Dooren P.M. (2000): Approximation of Large-Scale Dynamical Systems. — Notes of a Short Course given at the SIAM Annual Meeting, Puerto Rico. (Notes available from the authors’ websites.) 
  12. Antoulas A.C. and Willems J.C. (1993): A behavioral approach to linear exact modeling. — IEEE Trans. Automat. Contr., Vol.AC–38, pp.1776–1802. Zbl0792.93008
  13. Antoulas A.C., Ball J.A., Kang J. and Willems J.C. (1990): On the solution of the minimal rational interpolation problem. — Lin. Alg. Applicns., Vol.137/138, pp.511–573. Zbl0715.93020
  14. Antoulas A.C., Grimme E.J. and Sorensen D. (1996): On behaviors, rational interpolation and the Lanczos algorithm. — Proc. IFAC World Congress, San Francisco. 
  15. Arnoldi W.E. (1951): The principle of minimized iterations in the solution of the matrix eigenvalue problem. — Quart. Appl. Math., Vol.9, pp.17–29. Zbl0042.12801
  16. Avrachenkov K.E. and Lasserre J.B. (2000): Analytic perturbation of Sylvester matrix equations. — Proc. IEEE Conf. Decision and Control, Sydney. 
  17. Bai Z. and Ye Q. (1998): Error estimation of the Padé approximation of transfer functions via the Lanczos process. — Electron. Trans. Numer. Anal., Vol.7, pp.1–17. Zbl0913.41013
  18. Bai Z., Feldmann P. and Freund R.W. (1997): Stable and passive reduced-order models based on partial Padé approximation via the Lanczos process. — Numer. Anal. Manuscript 97–3–10, Bell Laboratories, Murray Hill. 
  19. Bartels R.H. and Stewart G.W. (1972): Solution of the matrix equation AX + XB = C. — Comm. ACM, Vol.15, pp.820–826. 
  20. Berkooz G., Holmes P. and Lumley J.L. (1996): Coherent Structures, Dynamical Systems and Symmetry. — Cambridge: Cambridge University Press. Zbl0890.76001
  21. Boley D.L. (1994): Krylov space methods on state-space control models. — Circ. Syst. Signal Process., Vol.13, pp.733–758. Zbl0833.93024
  22. Boley D.L. and Golub G.H (1984): The Lanczos algorithm and controllability. — Syst. Contr. Lett., Vol.4, pp.317–324. Zbl0547.93021
  23. Chu M.T., Funderlic R.E. and Golub G.H. (1995): A rank-one reduction formula and its applications to matrix factorizations. — SIAM Rev., Vol.37, pp.512–530. Zbl0844.65033
  24. Datta B.N. and Saad Y. (1991): Arnoldi methods for large Sylvester-like observer matrix equations and an associated algorithm for partial spectrum assignment. — Lin. Alg. Applicns., Vol.154–156, pp.225–244,. Zbl0734.65037
  25. de Souza E. and Bhattacharyya S.P. (1981): Controllability, observability and the solution of AX − XB = C. — Lin. Alg. Applicns., Vol.39, pp.167–188. Zbl0468.15012
  26. Enns D.F. (1984): Model reduction with balanced realizations: An error bound and frequency weighted generalization. — Proc. 23rd IEEE Conf. Decision and Control, pp.127–132. 
  27. Feldmann P. and Freund R.W. (1995): Efficient linear circuit analysis by Padé approximation via the Lanczos process. — IEEE Trans. Comp.-Aided Design, Vol.14, pp.639–649. 
  28. Fernando K.V. and Nicholson H. (1983): On the structure of balanced and other principal representations of SISO systems. — IEEE Trans. Automat. Contr., Vol.AC–28, pp.228– 231. Zbl0507.93021
  29. Freund R.W. (1999): Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation, In: Applied and Computational Control, Signals, and Circuits (B.N. Datta, Ed.) — Boston: Birkhäuser, Vol.1, pp.435–498. Zbl0967.93008
  30. Gallivan K., Grimme E.J. and Van Dooren P. (1994a): Asymptotic waveform evaluation via a restarted Lanczos method. — Appl. Math. Lett., Vol.7, pp.75–80. Zbl0810.65067
  31. Gallivan K., Grimme E. and Van Dooren P. (1994b): Padé Approximation of large-scale dynamic systems with Lanczos methods. — Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, FL. Zbl0810.65067
  32. Gallivan K., Grimme E. and Van Dooren P. (1995): A rational Lanczos algorithm for model reduction. — CSRD Rep. No.1411, University of Illinois at Urbana-Champaign, IL. Zbl0870.65053
  33. Ghavimi A.R. and Laub A.J. (1996): Numerical methods for nearly singular constrained matrix Sylvester equations. — SIAM J. Matrix Anal. Appl., Vol.17, pp.212–221. Zbl0842.65027
  34. Glover K. (1984): All optimal Hankel-norm approximations of linear multivariable systems and their L∞ -error bounds. — Int. J. Contr., Vol.39, pp.1115–1193. Zbl0543.93036
  35. Golub G.H. and Van Loan C.F. (1989): Matrix Computations. — Baltimore, London: The Johns Hopkins University Press. 
  36. Gragg W.B. (1972): The Padé table and its relation to certain algorithms of numerical analysis. — SIAM Rev., Vol.14, pp.1–62. Zbl0238.30008
  37. Gragg W.B. and Lindquist A. (1983): On the partial realization problem. — Lin. Alg. Applicns., Vol.50, pp.277–319. Zbl0519.93024
  38. Grimme E.J. (1997): Krylov Projection Methods for Model Reduction. — Ph.D. Thesis, ECE Dept., Univ. of Illinois, Urbana-Champaign. 
  39. Grimme E.J., Sorensen D.C. and Van Dooren P. (1995): Model reduction of state space systems via an implicitly restarted Lanczos method. — Num. Algorithms, Vol.12, pp.1– 31. Zbl0870.65052
  40. Gutknecht M.H. (1994): The Lanczos process and Padé approximation. — Proc. Cornelius Lanczos Intl. Centenary Conf., (J.D. Brown et al., Eds.), pp.61–75, Philadelphia: SIAM. Zbl1260.65027
  41. Heath M.T., Laub A.J., Paige C.H. and Ward R.C. (1986): Computing the singular value decomposition of a product of two matrices. — SIAM J. Sci. Stat. Computing, Vol.7, pp.1147–1159. Zbl0607.65013
  42. Hodel A.S. and Misra P. (1997): Least-squares approximate solution of overdetermined Sylvester equations. — SIAM J. Matrix Anal. Applicns., Vol.18, pp.279–290. Zbl0871.65029
  43. Hodel A.S., Tenison R.B. and Poola K. (1996): Numerical solution of large Lyapunov equations by approximate power iteration. — Lin. Alg. Applicns., Vol.236, pp.205–230. Zbl0848.65033
  44. Hu D. and Reichel L. (1992): Krylov-subspace methods for the Sylvester equation. — Lin. Alg. Applicns., Vol.172, pp.283–313. Zbl0777.65028
  45. Hubert L., Meuleman J. and Heiser W. (2000): Two purposes for matrix factorization: A historical appraisal. — SIAM Rev., Vol.42, pp.68–82. Zbl0999.65014
  46. Jaimoukha I.M. and Kasenally E.M. (1997): Implicitly restarted Krylov subspace methods for stable partial realizations. — SIAM J. Matrix Anal. Applicns., Vol.18, pp.633–652. Zbl0873.65065
  47. Kalman R.E. (1979): On partial realizations, transfer functions, and canonical forms. — Acta Polyt. Scand. Ma., Vol.31, pp.9–32. Zbl0424.93020
  48. Kamon M., Wang F. and White J. (2000): Generating nearly optimal compact models from Krylov-subspace based reduced-order models. — IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Process., Vol.47, pp.239–248. 
  49. Kim S.W., Anderson B.D.O. and Madievski A.G. (1995): Error bound for transfer function order reduction using frequency weighted balanced truncation. — Syst. Contr. Lett., Vol.24, pp.183–192. Zbl0877.93012
  50. Lall S., Marsden J.E. and Glavaski S. (1998): Empirical model reduction of controlled nonlinear systems. — Techn. Rep. CIT-CDS-98-008, California Institute of Technology. Zbl1006.93010
  51. Lancaster P. (1970): Explicit solutions of matrix equations. — SIAM Rev., Vol.12, pp.544– 566. Zbl0209.06502
  52. Lanczos C. (1950): An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. — J. Res. Nat. Bureau Stan., Vol.45, pp.255–282. 
  53. Laub A.J., Heath M.T., Paige C.C. and Ward R.C. (1987): Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. — IEEE Trans. Automat. Contr., Vol.AC–32, pp.115–121. Zbl0624.93025
  54. Lehoucq R.B. and Salinger A.G. (2001): Large-scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers. — Int. J. Numer. Meth. Fluids, Vol.36, pp.309–327. Zbl1037.76036
  55. Lehoucq R.B., Sorensen D.C. and Yang C. (1998): ARPACK: User’s Guide. — Philadelphia: SIAM. Zbl0901.65021
  56. Li J., Wang F. and White J. (1999): An efficient Lyapunov equation-based approach for generating reduced-order models of interconnect. — Proc. 36th IEEE/ACM Design Automation Conf., New Orleans, LA. 
  57. Moore B.C. (1981): Principal component analysis in linear systems: Controllability, observability and model reduction. — IEEE Trans. Automat. Contr., Vol.AC–26, pp.17–32. Zbl0464.93022
  58. Ober R. (1991): Balanced parametrization of classes of linear systems. — SIAM J. Contr. Optim., Vol.29, pp.1251–1287. Zbl0741.93010
  59. Obinata G. and Anderson B.D.O. (2000): Model Reduction for Control System Design. — New York: Springer. Zbl0964.93003
  60. Penzl T. (2001): A cyclic low rank Smith method for large sparse Lyapunov equations. — SIAM J. Sci. Comp. (to appear). Zbl0958.65052
  61. Pillage L.T. and Rohrer R.A. (1990): Asymptotic waveform evaluation for timing analysis. — IEEE Trans. Comp. Aided Design, Vol.9, pp.352–366. 
  62. Romo T.D., Clarage J.B., Sorensen D.C and Phillips Jr. G.N. (1995): Automatic identification of discrete substates in proteins: Singular value decomposition analysis of time-averaged crystallographic refinements. — Proteins: Structure, Function, and Genetics, Vol.22, pp.311–321. 
  63. Roth W.E. (1952): The equation AX − Y B = C and AX − XB = C in matrices. — Proc. Amer. Math. Soc., Vol.3, pp.392–396. 
  64. Ruhe A. (1984): Rational Krylov sequence methods for eigenvalue computation. — Lin. Alg. Applicns., Vol.58, pp.391—405. Zbl0554.65025
  65. Saad Y. (1990): Numerical solution of large Lyapunov equations, In: Signal Processing, Scattering and Operator Theory, and Numerical Methods, Proc. MTNS–89 — Vol.3, pp.503– 511, Boston: Birkhäuser. 
  66. Simoncini V. (1996): On the numerical solution of AX − XB = C. — BIT, Vol.36, pp.814– 830. Zbl0863.65022
  67. Sorensen D.C. (1992): Implicit application of polynomial filters in a k-step Arnoldi method. — SIAM J. Matrix Anal. Applic., Vol.13, pp.357–385. Zbl0763.65025
  68. Sorensen D.C. (1995): Implicitly restarted Arnoldi/Lanczos methods and large-scale SVD applications, In: SVD and Signal Processing III (M. Moonen and B. de Moor, Eds.) — Amsterdam: Elsevier. Zbl0826.65036
  69. Sorensen D.C. (1999): Lecture notes on numerical methods for large scale eigenvalue problems. — Draft of lectures delivered at the Royal Institute of Technology KTH, Stockholm, Spring. 
  70. Stroobandt D. (2000): Recent advances in system-level interconnect prediction. — IEEE Circuits and Systems Newsletter, Vol.11, pp.4–20. 
  71. Van Dooren P. (1995): The Lanczos algorithm and Padé approximations. — Short Course, Benelux Meeting on Systems and Control. 
  72. Van Dooren P.M. (2000): Gramian based model reduction of large-scale dynamical systems, In: Numerical Analysis 1999 — London: Chapman and Hall, CRC Press, pp.231–247. Zbl0952.65051
  73. Varga A. (1991): Balancing-free square-root algorithms for computing singular perturbation approximations. — Proc. 30th IEEE CDC, Brighton, UK, pp.1062–1065. 
  74. Varga A. (1995): Enhanced modal approach for model reduction. — Math. Modell. Syst., Vol.1, pp.91–105. Zbl0834.93022
  75. Varga A. (1998): Computation of normalized coprime factorizations of rational matrices. — Syst. Contr. Lett., Vol.33, pp.37–45. Zbl0902.93028
  76. Varga A. (1999): Model reduction routines for SLICOT, Niconet Rep. No.8. Report available from: ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS/NIC1999-8.ps.Z 
  77. Varga A. (2000): Balanced truncation model reduction of periodic systems. — Proc. IEEE CDC, Session WeP05, Sydney. 
  78. Volkwein S. (1999): Proper orthogonal decomposition and singular value decomposition. — Tech. Rep. SFB–153, Institut für Mathematik, Universität Graz. 
  79. Zhou K. (1995): Frequency-weighted L∞ norm and optimal Hankel norm model reduction. — IEEE Trans. Automat. Contr., Vol.AC–40, pp.1687–1699. Zbl0844.93022
  80. Zhou K. (1999): A new balanced realization and model reduction method for unstable systems. — Proc. 14th IFAC World Congress, Beijing, Vol.D–2b–04–4, pp.123–128. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.