### A T-S fuzzy model-based adaptive exponential synchronization method for uncertain delayed chaotic systems: an LMI approach.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Analytic interpolation problems arise quite naturally in a variety of engineering applications. This is due to the fact that analyticity of a (transfer) function relates to the stability of a corresponding dynamical system, while positive realness and contractiveness relate to passivity. On the other hand, the degree of an interpolant relates to the dimension of the pertinent system, and this motivates our interest in constraining the degree of interpolants. The purpose of the present paper is to...

In this paper we review the state of affairs in the area of approximation of large-scale systems. We distinguish three basic categories, namely the SVD-based, the Krylov-based and the SVD-Krylov-based approximation methods. The first two were developed independently of each other and have distinct sets of attributes and drawbacks. The third approach seeks to combine the best attributes of the first two.

The following is a short survey of the notion of a well-posed linear system. We start by describing the most basic concepts, proceed to discuss dissipative and conservative systems, and finally introduce J-energy-preserving systems, i.e., systems that preserve energy with respect to some generalized inner products (possibly semi-definite or indefinite) in the input, state and output spaces. The class of well-posed linear systems contains most linear time-independent distributed parameter systems:...

The area of numerical analysis interacts with the area of control and systems theory in a number of ways, some of which are widely recognized and some of which are not fully appreciated or understood. This paper will briefly discuss some of these areas of interaction and place the papers in this volume in context.

We survey the literature on well-posed linear systems, which has been an area of rapid development in recent years. We examine the particular subclass of conservative systems and its connections to scattering theory. We study some transformations of well-posed systems, namely duality and time-flow inversion, and their effect on the transfer function and the generating operators. We describe a simple way to generate conservative systems via a second-order differential equation in a Hilbert space....