The relationship between the infinite eigenvalue assignment for singular systems and the solvability of polynomial matrix equations
International Journal of Applied Mathematics and Computer Science (2003)
- Volume: 13, Issue: 2, page 161-167
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Dai L. (1989): Singular Control Systems. - Berlin: Springer. Zbl0669.93034
- Chu D. and Ho D.W.C. (1999): Infinite eigenvalue assignment for singular systems. - Lin. Alg. Its Applicns., Vol. 298, No. 1, pp. 21-37. Zbl0987.93037
- Kaczorek T. (1993): Linear Control Systems, Vols. 1 and 2. - New York: Wiley. Zbl0784.93003
- Kaczorek T. (2000): Reduced-order perfect and standard observers for singular continuous-time linear systems. - Mach. Intell. Robot. Contr., Vol. 2, No. 3, pp. 93-98.
- Kaczorek T. (2002a): Perfect functional observers of singular continuous-time linear systems. - Mach. Intell.Robot. Contr., Vol. 4, No. 1, pp. 77-82.
- Kaczorek T. (2002b): Polynomial approach to pole shifting to infinity in singular systems by feedbacks.- Bull. Pol. Acad. Sci. Techn. Sci., Vol. 50, No. 2, pp. 134-144. Zbl1038.93037
- Kaliath T. (1980): Linear Systems. -Englewood Cliffs: Prentice Hall.
- Kučera V. (1972): A contribution to matrix equations. - IEEE Trans.Automat. Contr., Vol. AC-17, No. 6, pp. 344-347. Zbl0262.93043
- Kučera V. (1979): Discrete Linear Control, The Polynomial Equation Approach. - Chichester: Wiley. Zbl0432.93001
- Kučera V. (1981): Analysis and Design of Discrete Linear Control Systems. - Prague: Academia.
- Wonham W.M. (1979): Linear Multivariable Control: A Geometric Approach. -New York: Springer. Zbl0424.93001