A numerical procedure for filtering and efficient high-order signal differentiation

Salim Ibrir; Sette Diop

International Journal of Applied Mathematics and Computer Science (2004)

  • Volume: 14, Issue: 2, page 201-208
  • ISSN: 1641-876X

Abstract

top
In this paper, we propose a numerical algorithm for filtering and robust signal differentiation. The numerical procedure is based on the solution of a simplified linear optimization problem. A compromise between smoothing and fidelity with respect to the measurable data is achieved by the computation of an optimal regularization parameter that minimizes the Generalized Cross Validation criterion (GCV). Simulation results are given to highlight the effectiveness of the proposed procedure.

How to cite

top

Ibrir, Salim, and Diop, Sette. "A numerical procedure for filtering and efficient high-order signal differentiation." International Journal of Applied Mathematics and Computer Science 14.2 (2004): 201-208. <http://eudml.org/doc/207691>.

@article{Ibrir2004,
abstract = {In this paper, we propose a numerical algorithm for filtering and robust signal differentiation. The numerical procedure is based on the solution of a simplified linear optimization problem. A compromise between smoothing and fidelity with respect to the measurable data is achieved by the computation of an optimal regularization parameter that minimizes the Generalized Cross Validation criterion (GCV). Simulation results are given to highlight the effectiveness of the proposed procedure.},
author = {Ibrir, Salim, Diop, Sette},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {optimization; smoothing; splines functions; generalized cross validation; differentiation; spline functions},
language = {eng},
number = {2},
pages = {201-208},
title = {A numerical procedure for filtering and efficient high-order signal differentiation},
url = {http://eudml.org/doc/207691},
volume = {14},
year = {2004},
}

TY - JOUR
AU - Ibrir, Salim
AU - Diop, Sette
TI - A numerical procedure for filtering and efficient high-order signal differentiation
JO - International Journal of Applied Mathematics and Computer Science
PY - 2004
VL - 14
IS - 2
SP - 201
EP - 208
AB - In this paper, we propose a numerical algorithm for filtering and robust signal differentiation. The numerical procedure is based on the solution of a simplified linear optimization problem. A compromise between smoothing and fidelity with respect to the measurable data is achieved by the computation of an optimal regularization parameter that minimizes the Generalized Cross Validation criterion (GCV). Simulation results are given to highlight the effectiveness of the proposed procedure.
LA - eng
KW - optimization; smoothing; splines functions; generalized cross validation; differentiation; spline functions
UR - http://eudml.org/doc/207691
ER -

References

top
  1. Anderson R.S. and Bloomfield P. (1974): A time series approach to numerical differentiation. - Technom., Vol. 16, No. 1, pp. 69-75. Zbl0286.65012
  2. Barmish B.R. and Leitmann G. (1982): On ultimate boundness control of uncertain systems in the absence of matching assumptions. - IEEE Trans. Automat.Contr., Vol. AC-27, No. 1, pp. 153-158. Zbl0469.93043
  3. Chen Y. H. (1990): State estimation for non-linear uncertain systems: A design based on properties related to the uncertainty bound. - Int. J. Contr., Vol. 52, No. 5, pp. 1131-1146. Zbl0707.93005
  4. Chen Y. H. and Leitmann G. (1987): Robustness of uncertain systems in the absence of matching assumptions. - Int. J. Contr., Vol. 45, No. 5, pp. 1527-1542. Zbl0623.93023
  5. Ciccarella G., Mora M.D. and Germani A. (1993): A Luenberger-like observer for nonlinear systems. - Int. J. Contr., Vol. 57, No. 3, pp. 537-556. Zbl0772.93018
  6. Craven P. and Wahba G. (1979): Smoothing noisy data with spline functions: Estimation the correct degree of smoothing by the method of generalized cross-validation. - Numer. Math., Vol. 31, No.4, pp. 377-403. Zbl0377.65007
  7. Dawson D.M., Qu Z. and Caroll J.C. (1992): On the state observation and output feedback problems for nonlinear uncertain dynamic systems. - Syst.Contr. Lett., Vol. 18, No.3, pp. 217-222. 
  8. De Boor C., (1978): A Practical Guide to Splines. - New York: Springer. Zbl0406.41003
  9. Diop S., Grizzle J.W., Morral P.E. and Stefanoupoulou A.G. (1993): Interpolation and numerical differentiation for observer design. - Proc. Amer. Contr. Conf., Evanston, IL, pp. 1329-1333. 
  10. Eubank R.L. (1988): Spline Smoothing and Nonparametric Regression. -New York: Marcel Dekker. Zbl0702.62036
  11. Gasser T., Muller H.G. and Mammitzsch V. (1985): Kernels for nonparametric curve estimation. - J. Roy. Statist. Soc., Vol. B47, pp. 238-252. Zbl0574.62042
  12. Gauthier J.P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems: Application to bioreactors. - IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875-880. Zbl0775.93020
  13. Georgiev A.A. (1984): Kernel estimates of functions and their derivatives with applications. - Statist. Prob. Lett., Vol. 2, pp. 45-50. Zbl0532.62023
  14. Hardle W. (1984): Robust regression function estimation. - Multivar.Anal., Vol. 14, pp. 169-180. Zbl0538.62029
  15. Hardle W. (1985): On robust kernel estimation of derivatives of regression functions. -Scand. J. Statist., Vol. 12, pp. 233-240. Zbl0568.62041
  16. Ibrir S. (1999): Numerical algorithm for filtering and state observation. -Int. J. Appl. Math. Comp. Sci., Vol. 9, No.4, pp. 855-869. Zbl0952.93037
  17. Ibrir S. (2000): Methodes numriques pour la commande et l'observation des systèmes non lineaires. - Ph.D. thesis, Laboratoire des Signaux et Systèmes, Univ. Paris-Sud. 
  18. Ibrir S. (2001): New differentiators for control and observation applications. -Proc. Amer. Contr. Conf., Arlington, pp. 2522-2527. 
  19. Ibrir S. (2003): Algebraic riccati equation based differentiation trackers. -AIAA J. Guid. Contr. Dynam., Vol. 26, No. 3, pp. 502-505. 
  20. Kalman R.E. (1960): A new approach to linear filtering and prediction problems. -Trans. ASME J. Basic Eng., Vol. 82, No. D, pp. 35-45. 
  21. Leitmann G. (1981): On the efficacy of nonlinear control in uncertain linear systems. - J. Dynam. Syst. Meas. Contr., Vol. 102, No.2, pp. 95-102. Zbl0473.93055
  22. Luenberger D.G. (1971): An introduction to observers. - IEEE Trans.Automat. Contr., Vol. 16, No.6, pp. 596-602. 
  23. Misawa E.A. and Hedrick J.K. (1989): Nonlinear observers. A state of the art survey. - J. Dyn. Syst. Meas. Contr., Vol.111, No.3, pp. 344-351. Zbl0695.93106
  24. Muller H.G. (1984): Smooth optimum kernel estimators of densities, regression curves and modes. - Ann. Statist., Vol. 12, pp. 766-774. Zbl0543.62031
  25. Rajamani R. (1998): Observers for Lipschitz nonlinear systems. - IEEE Trans. Automat. Contr., Vol. 43, No. 3, pp. 397-400. Zbl0905.93009
  26. Reinsch C.H. (1967): Smoothing by spline functions. - Numer.Math., Vol. 10, pp. 177-183. Zbl0161.36203
  27. Reinsch C.H. (1971): Smoothing by spline functions ii. - Numer. Math., Vol. 16, No.5, pp. 451-454. Zbl1248.65020
  28. Slotine J.J.E., Hedrick J.K. and Misawa E.A. (1987): On sliding observers for nonlinear systems. - J. Dynam. Syst. Meas. Contr., Vol. 109, No.3, pp. 245-252. Zbl0661.93011
  29. Tornambè A. (1992): High-gain observers for nonlinear systems. - Int. J. Syst. Sci., Vol. 23, No.9, pp. 1475-1489. Zbl0768.93013
  30. Xia X.-H. and Gao W.-B. (1989): Nonlinear observer design by observer error linearization. - SIAM J. Contr. Optim., Vol. 27, No. 1, pp. 199- 216. Zbl0667.93014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.