On the computation of the minimal polynomial of a polynomial matrix

Nicholas Karampetakis; Panagiotis Tzekis

International Journal of Applied Mathematics and Computer Science (2005)

  • Volume: 15, Issue: 3, page 339-349
  • ISSN: 1641-876X

Abstract

top
The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs DFT techniques. The whole theory is illustrated with examples.

How to cite

top

Karampetakis, Nicholas, and Tzekis, Panagiotis. "On the computation of the minimal polynomial of a polynomial matrix." International Journal of Applied Mathematics and Computer Science 15.3 (2005): 339-349. <http://eudml.org/doc/207748>.

@article{Karampetakis2005,
abstract = {The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs DFT techniques. The whole theory is illustrated with examples.},
author = {Karampetakis, Nicholas, Tzekis, Panagiotis},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {discrete Fourier transform; linear matrix equations; minimal polynomial; polynomial matrix},
language = {eng},
number = {3},
pages = {339-349},
title = {On the computation of the minimal polynomial of a polynomial matrix},
url = {http://eudml.org/doc/207748},
volume = {15},
year = {2005},
}

TY - JOUR
AU - Karampetakis, Nicholas
AU - Tzekis, Panagiotis
TI - On the computation of the minimal polynomial of a polynomial matrix
JO - International Journal of Applied Mathematics and Computer Science
PY - 2005
VL - 15
IS - 3
SP - 339
EP - 349
AB - The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs DFT techniques. The whole theory is illustrated with examples.
LA - eng
KW - discrete Fourier transform; linear matrix equations; minimal polynomial; polynomial matrix
UR - http://eudml.org/doc/207748
ER -

References

top
  1. Atiyah M.F. and McDonald I.G. (1964): Introduction to Commutative Algebra. - Reading, MA: Addison-Wesley. 
  2. Augot D. and Camion P. (1997): On the computation of minimal polynomials, cyclic vectors, and Frobenius forms. - Lin. Alg. App., Vol. 260, pp. 61-94. Zbl0877.65022
  3. Ciftcibaci T. and Yuksel O. (1982): On the Cayley-Hamllton theorem for two-dimensional systems. - IEEE Trans. Automat.Contr., Vol. 27, No. 1, pp. 193-194. 
  4. Coppersmith D. and Winograd S. (1990): Matrix multiplication via arithmetic progressions. - J. Symb. Comput., Vol. 9, No.3, pp. 251-280. Zbl0702.65046
  5. Faddeev D.K. and Faddeeva V.N. (1963): Computational Methods of Linear Algebra. - San Francisco: Freeman. Zbl0451.65015
  6. Fragulis G.F., Mertzios B. and Vardulakis A.I.G. (1991): Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. - Int. J. Contr., Vol. 53, No. 2, pp. 431-443. Zbl0731.93027
  7. Fragulis G.F. (1995): Generalized Cayley-Hamilton theoremfor polynomial matrices with arbitrary degree. - Int. J. Contr., Vol. 62,No. 6, pp. 1341-1349. Zbl0843.93023
  8. Gałkowski K. (1996): Matrix description ofpolynomials multivariable. - Lin. Alg. Applic., Vol. 234,pp. 209-226. Zbl0849.93033
  9. Gantmacher F.R. (1959): The Theory of Matrices. - New York: Chelsea. Zbl0085.01001
  10. Givone D.D. and Roesser R.P. (1973): Minimization of multidimensional linear iterative circuits. - IEEE Trans. Comput., Vol. C-22.pp. 673-678. Zbl0256.94037
  11. Helmberg G., Wagner P. and Veltkamp G. (1993): On Faddeev-Leverrier's method for the computation of the characteristic polynomial of a matrix and of eigenvectors. - Lin. Alg. Applic., Vol. 185, pp. 219-223. Zbl0770.65023
  12. Kaczorek T. (1989): Existence and uniqueness of solutions and Cayley-Hamilton theorem for a general singular model of 2-D systems. - Bull. Polish Acad. Sci. Techn. Sci., Vol. 37, No. 5-6, pp. 275-284. Zbl0721.93045
  13. Kaczorek T. (1995a): An extension of the Cayley-Hamilton theorem for 2-D continuous-discrete linear systems. - Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507-515. Zbl0823.93032
  14. Kaczorek T. (1995b): Generalization of the Cayley-Hamilton theorem for nonsquare matrices. - Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIII-SPETO, Gliwice-Ustron, Poland, pp. 77-83. 
  15. Kaczorek T. (1995c): An extension of the Cayley-Hamilton theorem for nonsquare block matrices and computation of the left and right inverses of matrices. - Bull. Polish Acad. Sci. Techn. Sci., Vol. 43, No. 1,pp. 49-56. Zbl0837.15012
  16. Kaczorek T. (1995d): An extension of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices. - Bull. Polish Acad. Sci., Techn. Sci., Vol. 43, No. 1, pp. 39-48. Zbl0845.93042
  17. Kaczorek T. (1998): An extension of the Cayley-Hamiltontheorem for a standard pair of block matrices. - Appl. Math. Comput. Sci.,Vol. 8, No. 3, pp. 511-516. Zbl0914.15011
  18. Kaczorek T. (2005): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices. - IEEE Trans. Automat. Contr., Vol. 50,No. 5, pp.671-674. 
  19. Kitamoto T. (1999): Efficient computation of the characteristic polynomial of a polynomial matrix. - IEICE Trans. Fundament., Vol. E83-A, No.5, pp. 842-848. 
  20. Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Leverrier's method for the matrix pencil (sE-A). - IEEE Trans. Automat. Contr., Vol. 31, No. 9, pp. 869-870. Zbl0601.15010
  21. Mertzios B. and Christodoulou M. (1986): On the generalized Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr.,Vol. 31, No. 2, pp. 156-157. Zbl0589.15008
  22. Paccagnella L. E. and Pierobon G. L. (1976): FFT calculation of a determinantal polynomial. - IEEE Trans. Automat. Contr.,Vol. 21, No. 3, pp. 401-402. 
  23. Schuster A. and Hippe P. (1992): Inversion of polynomial matrices by interpolation. - IEEE Trans. Automat. Contr., Vol. 37, No. 3, pp. 363-365. 
  24. Theodorou N.J. (1989): M-dimensional Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol. 34, No. 5, pp. 563-565. 
  25. Tzekis P. and Karampetakis N. (2005): On the computation of the minimal polynomial of a two-variable polynomial matrix. - Proc. 4th Int. Workshop Multidimensional (nD) Systems, Wuppertal, Germany. Zbl1169.15300
  26. Victoria J. (1982): A block Cayley-Hamilton theorem. - Bull. Math. Soc. Sci. Math. Roum., Vol. 26, No. 1, pp. 93-97. Zbl0488.15006
  27. Vilfan B. (1973): Another proof of the two-dimensional Cayley-Hamilton theorem. - IEEE Trans. Comput., Vol. C-22, pp. 1140. Zbl0268.15008
  28. Yu B. and Kitamoto T. (2000): The CHACM method for computing the characteristic polynomial of a polynomial matrix. - IEICE Trans. Fundament., E83-A, No.7, pp. 1405-1410. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.