Niching mechanisms in evolutionary computations

Zdzisław Kowalczuk; Tomasz Białaszewski

International Journal of Applied Mathematics and Computer Science (2006)

  • Volume: 16, Issue: 1, page 59-84
  • ISSN: 1641-876X

Abstract

top
Different types of niching can be used in genetic algorithms (GAs) or evolutionary computations (ECs) to sustain the diversity of the sought optimal solutions and to increase the effectiveness of evolutionary multi-objective optimization solvers. In this paper four schemes of niching are proposed, which are also considered in two versions with respect to the method of invoking: a continuous realization and a periodic one. The characteristics of these mechanisms are discussed, while as their performance and effectiveness are analyzed by considering exemplary multi-objective optimization tasks both of a synthetic and an engineering (FDI) design nature.

How to cite

top

Kowalczuk, Zdzisław, and Białaszewski, Tomasz. "Niching mechanisms in evolutionary computations." International Journal of Applied Mathematics and Computer Science 16.1 (2006): 59-84. <http://eudml.org/doc/207778>.

@article{Kowalczuk2006,
abstract = {Different types of niching can be used in genetic algorithms (GAs) or evolutionary computations (ECs) to sustain the diversity of the sought optimal solutions and to increase the effectiveness of evolutionary multi-objective optimization solvers. In this paper four schemes of niching are proposed, which are also considered in two versions with respect to the method of invoking: a continuous realization and a periodic one. The characteristics of these mechanisms are discussed, while as their performance and effectiveness are analyzed by considering exemplary multi-objective optimization tasks both of a synthetic and an engineering (FDI) design nature.},
author = {Kowalczuk, Zdzisław, Białaszewski, Tomasz},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {ranking; solutions diversity; genetic algorithms; multi-objective optimization; engineering designs; evolutionary computations; detection observers; Pareto-optimality; niching},
language = {eng},
number = {1},
pages = {59-84},
title = {Niching mechanisms in evolutionary computations},
url = {http://eudml.org/doc/207778},
volume = {16},
year = {2006},
}

TY - JOUR
AU - Kowalczuk, Zdzisław
AU - Białaszewski, Tomasz
TI - Niching mechanisms in evolutionary computations
JO - International Journal of Applied Mathematics and Computer Science
PY - 2006
VL - 16
IS - 1
SP - 59
EP - 84
AB - Different types of niching can be used in genetic algorithms (GAs) or evolutionary computations (ECs) to sustain the diversity of the sought optimal solutions and to increase the effectiveness of evolutionary multi-objective optimization solvers. In this paper four schemes of niching are proposed, which are also considered in two versions with respect to the method of invoking: a continuous realization and a periodic one. The characteristics of these mechanisms are discussed, while as their performance and effectiveness are analyzed by considering exemplary multi-objective optimization tasks both of a synthetic and an engineering (FDI) design nature.
LA - eng
KW - ranking; solutions diversity; genetic algorithms; multi-objective optimization; engineering designs; evolutionary computations; detection observers; Pareto-optimality; niching
UR - http://eudml.org/doc/207778
ER -

References

top
  1. Brogan W.L. (1991): Modern Control Theory. - Englewood Cliffs, NJ: Prentice Hall. Zbl0747.93001
  2. Chen J., Patton R.J. and Liu G. (1996): Optimal residual design for fault diagnosis using multi-objective optimization and genetic algorithms. - Int. J. Syst. Sci., Vol. 27, No. 6, pp. 567-576. Zbl0854.93134
  3. Chambers L. (Ed.) (1995): Practical Handbook of Genetic Algorithms. - Boca Raton, FL: CRC Press. Zbl0840.68001
  4. Coello C.C.A. (2001): A short tutorial on evolutionary multiobjective optimization. - Proc. 1st Int. Conf. Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science, No. 1993, pp. 21-40, Berlin: Springer. 
  5. Cotta C. and Schaefer R. (Eds.) (2004): Evolutionary Computation. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 3, pp. 279-440. 
  6. Deb K., Pratap A., Argarwal S. and Meyarivan T. (2000): A fast and elitist multi-objective genetic algorithm: NSGA-II. - Techn. Rep., No. 200001 (PIN 208 016), Kanpur, India: Kanpur Genetic Algorithms Laboratory. 
  7. De Jong K.A. (1975): An analysis of the behavior of a class of genetic adaptive systems. - Ph.D. thesis., Ann Arbor, MI: University of Michigan. 
  8. Dridi M. and Kacem I. (2004): A hybrid approach for scheduling transportation networks. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 3, pp. 397-409. Zbl1137.90331
  9. Fogarty T.C. and Bull L. (1995): Optimizing individual control rules and multiple communicating rule-based control systems with parallel distributed genetic algorithms. - IEE Proc. Contr. Theory Applic., Vol. 142, No. 3, pp. 211-215. 
  10. Fonseca C.M. and Fleming P.J. (1993): Genetic algorithms for multi-objective optimization: Formulation, discussion and modification. - In: (Forrest, 1993), pp. 416-423. 
  11. Forrest S. (Ed.) (1993): Genetic Algorithms. - Proc. 5th Int. Conf., San Mateo, CA: Morgan Kaufmann. 
  12. Goldberg D.E. (1986): The genetic algorithm approach: Why, how, and what next. In: Adaptive and Learning Systems. Theory and Applications (K.S. Narendra, Ed.). - New York: Plenum Press, pp. 247-253. 
  13. Goldberg D.E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning. - Reading, MA: Addison-Wesley. Zbl0721.68056
  14. Goldberg D.E. (1990): Real-coded genetic algorithms, virtual alphabets, and blocking. - Techn. Rep., No. 90001, Champaing, IL: University of Illinois at Urbana. Zbl0764.68143
  15. Grefenstette J.J. (Ed.) (1985): Genetic Algorithms and their Applications. - Proc. Int. Conf., Pittsburgh, PA: Lawrence Erlbaum Associates. 
  16. Hajela P. and Lin C.-Y. (1992): Genetic search strategies in multicriterion optimal design. - Struct. Optim., Vol. 4, No. 2, pp. 99-107. 
  17. Holland H. (1975): Adaptation in Natural and Artificial Systems. - Ann Arbor, MI: University of Michigan Press. 
  18. Horn J. and Nafpliotis N. (1993): Multiobjective optimization using the niched Pareto genetic algorithm. - Techn. Rep., No. 93005, Genetic Algorithms Laboratory, University of Illinois at Urbana. 
  19. Horn J., Nafpliotis N. and Goldberg D.E. (1994): A niched Pareto genetic algorithm for multiobjective optimization. - Proc. 1st IEEE Conf. Evolutionary Computation, IEEE World Congress Computational Computation, Piscataway, NJ, Vol. 1, pp. 82-87. 
  20. Huang Y. and Wang S. (1997): The identification of fuzzy grey prediction systems by genetic algorithms. - Int. J. Syst. Sci., Vol. 28, No. 1, pp. 15-24. Zbl0875.93234
  21. Izadi-Zamanabadi R. and Blanke M. (1998): A ship propulsion system model for fault-tolerant control. - Techn. Rep., No. 4262, Aalborg University, Denmark. Zbl0929.93005
  22. Kirstinsson K. (1992): System identification and control using genetic algorithms. - IEEE Trans. Syst. Man Cybern., Vol. 22, No. 5, pp. 1033-1046. Zbl0825.93940
  23. Korbicz J., Kościelny J.M., Kowalczuk Z. and Cholewa W., (Eds.) (2004): Fault Diagnosis. Models, Artificial Intelligence, Applications. - Berlin: Springer. Zbl1074.93004
  24. Kowalczuk Z. and Białaszewski T. (2000a): Pareto-optimal observers for ship propulsion systems by evolutionary algorithms. - Proc. IFAC Symp. Safeprocess, Budapest, Hungary, Vol. 2, pp. 914-919. 
  25. Kowalczuk Z. and Białaszewski T. (2000b): Fitness and ranking individuals warped by niching mechanism. - Proc. Polish-German Symp. Science, Research, Education, Zielona Gora, Poland, pp. 97-102. 
  26. Kowalczuk Z. and Białaszewski T. (2001): Evolutionary multi-objective optimization with genetic sex recognition. - Proc. 7th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, Vol. 1, pp. 143-148. 
  27. Kowalczuk Z. and Białaszewski T. (2002): Performance and robustness design of control systems via genetic gender multi-objective optimization. - Proc. 15th IFAC World Congress, Barcelona, Spain, (CD-ROM, 2a). 
  28. Kowalczuk Z. and Białaszewski T. (2003): Multi-gender genetic optimization of diagnostic observers. - Proc. IFAC Workshop Control Applications of Optimization, Visegrad, Hungary, pp. 15-20. 
  29. Kowalczuk Z. and Białaszewski T. (2004a): Genetic algorithms in multi-objective optimization of detection observers. - In: (Korbicz et al., 2004), pp. 511-556. 
  30. Kowalczuk Z. and Białaszewski T. (2004b): Periodic and continuous niching in genetic optimization of detection observers. - Proc. 10-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, Vol. 1, pp. 781-786. 
  31. Kowalczuk Z., Suchomski P. and Białaszewski T. (1999a): Evolutionary multi-objective Pareto optimization of diagnostic state observers. - Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 3, pp. 689-709. Zbl0945.93515
  32. Kowalczuk Z., Suchomski P. and Białaszewski T. (1999b): Genetic multi-objective Pareto optimization of state observers for FDI. - Proc. Europ. Contr. Conf., Karlsruhe, Germany, (CD-ROM, CP-15:10). Zbl0945.93515
  33. Kowalczuk Z. and Suchomski P. (2004a): Control theory methods in diagnostic system design. In: (Korbicz et al., 2004), pp. 155-218. 
  34. Kowalczuk Z. and Suchomski P. (2004b): Optimal detection observers based on eigenstructure assignment. In: (Korbicz et al., 2004), pp. 219-259. 
  35. Li C.J., Tzeng T. and Jeon Y.C. (1997): A learning controller based on nonlinear ARX inverse model identified by genetic algorithm. - Int. J. Syst. Sci., Vol. 28, No. 8, pp. 847-855. Zbl0875.93083
  36. Linkens D.A. and Nyongensa H.O. (1995): Genetic algorithms for fuzzy control, Part 1: Offline system development and application. - IEE Proc. Contr. Theory Applic., Vol. 142, No. 3, pp. 161-185. 
  37. Man K.S., Tang K.S., Kwong S. and Lang W.A.H. (1997): Genetic Algorithms for Control and Signal Processing. - London: Springer. 
  38. Martinez M., Senent J. and Blacso X. (1996): A comparative study of classical vs. genetic algorithm optimization applied in GPC controller. - Proc. IFAC 13th Triennial Word Congress, San Francisco, CA, pp. 327-332. 
  39. Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs. - Berlin: Springer. Zbl0841.68047
  40. Obuchowicz A. and Pretki P. (2004): Phenotypic evolution with mutation based on symmetric, α-stable distributions. - Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 3, pp. 289-316. Zbl1104.68566
  41. Park D. and Kandel A. (1994): Genetic-based new fuzzy reasoning models with application to fuzzy control. - IEEE Trans. Syst., Man Cybern., Vol. 24, No. 1, pp. 39-47. 
  42. Patton R.J., Frank P.M. and Clark R.N., (Eds.) (1989): Fault Diagnosisin Dynamic Systems. Theory and Application. - New York: Prentice Hall. 
  43. Ryan C. (1995): Niche and species formation in genetic algorithms, In: (Chambers, 1995). - Vol. 1, No. 2, pp. 55-74. 
  44. Schaffer J.D. (1985): Multiple objective optimization with vector evaluated genetic algorithms. In: (Grefenstette, 1985). - pp. 93-100. 
  45. Silverman B.W. (1986): Density Estimation for Statistics and Data Analysis. - London: Chapman and Hall. Zbl0617.62042
  46. Srinivas N. and Deb K. (1994): Multiobjective optimization using nondominated sorting in genetic algorithms. - Evolut. Comput., Vol. 2, No. 3, pp. 221-248. 
  47. Suchomski P. and Kowalczuk Z. (2004): Robust H^∞-optimal synthesis of FDI systems, In: (Korbicz et al., 2004), pp. 261-298. 
  48. Viennet R., Fontiex C. and Marc I. (1996): Multicriteria optimisation using a genetic algorithm for determining a Pareto set. - Int. J. Syst. Sci., Vol. 27, No. 2, pp. 255-260. Zbl0844.90079
  49. Zakian V. and Al-Naib U. (1973): Design of dynamical and control systems by the method of inequalities. - IEE Proc. Contr. Theory Applic., Vol. 120, No. 11, pp. 1421-1427. 
  50. Zitzler E. and Thiele L. (1998): An evolutionary algorithm for multiobjective optimization: The Strength Pareto Evolutionary Algorithm. - Techn. Rep., No. 43, Zurich, Switzerland: Computer Engineering and Networks Laboratory, ETH. 
  51. Zitzler E., Laumanns M. and Thiele L. (2001): SPEA-2: Improving the strength Pareto evolutionary algorithm. - Techn. Rep., No. 103, Zurich, Switzerland: Computer Engineering and Networks Laboratory, Dept. of Electrical Engineering, ETH. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.