Customized crossover in evolutionary sets of safe ship trajectories
Rafał Szłapczyński; Joanna Szłapczyńska
International Journal of Applied Mathematics and Computer Science (2012)
- Volume: 22, Issue: 4, page 999-1009
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Alba, E., Luna, F. and Nebro, A.J. (2004). Advances in parallel heterogeneous genetic algorithms for continuous optimisation, International Journal of Applied Mathematics and Computer Science 14(3): 317-333. Zbl1180.90366
- Belter, D. and Skrzypczyński, P. (2010). A biologically inspired approach to feasible gait learning for a hexapod robot, International Journal of Applied Mathematics and Computer Science 20(1): 69-84, DOI: 10.2478/v10006-010-0005-7. Zbl1300.93116
- Beyera, H., Schwefela, H. and Wegenerb, I. (2002). How to analyse evolutionary algorithms, Theoretical Computer Science 287(1): 101-130.
- Cockroft, A. and Lameijer, J. (1993). A Guide to Collision Avoidance Rules, Butterworth-Heinemann Ltd., Oxford.
- Eiben, A. and Schoenauer, M. (2002). Evolutionary computing, Information Processing Letters 82(1): 1-6. Zbl1013.68163
- Jóźwiak, L. and Postula, A. (2002). Genetic engineering versus natural evolution: Genetic algorithms with deterministic operators, Journal of Systems Architecture 48(1-3): 99-112.
- Julstrom, B.A. (2004). Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem, International Journal of Applied Mathematics and Computer Science 14(3): 385-396. Zbl1137.90734
- Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59-84. Zbl1334.90212
- Krawiec, K., Jaskowski, W. and Szubert, M. (2011). Evolving small-board Go players using coevolutionary temporal difference learning with archives, International Journal of Applied Mathematics and Computer Science 21(4): 717-731, DOI: 10.2478/v10006-011-0057-3. Zbl1286.91034
- Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary algorithms for job-shop scheduling, International Journal of Applied Mathematics and Computer Science 14(1): 91-103. Zbl1171.90402
- Michalewicz, Z. and Fogel, D. (2004). How to Solve It: Modern Heuristics, Springer-Verlag, Berlin. Zbl1058.68105
- Miquélez, T., Bengoetxea, E. and Larrañaga, P. (2004). Evolutionary computation based on Bayesian classifiers, International Journal of Applied Mathematics and Computer Science 14(3): 335-349. Zbl1084.90538
- Pradhan, S., Parhi, D., Panda, A. and Behera, R. (2006). Potential field method to navigate several mobile robots, Applied Intelligence 25(1): 321-333.
- Śmierzchalski, R. and Michalewicz, Z. (2000). Modeling of a ship trajectory in collision situations at sea by evolutionary algorithm, IEEE Transactions on Evolutionary Computation 4(3): 227-241.
- Styrcz, A., Mrozek, J. and Mazur, G. (2011). A neural-network controlled dynamic evolutionary scheme for global molecular geometry optimization, International Journal of Applied Mathematics and Computer Science 21(3): 559-566, DOI: 10.2478/v10006-011-0044-8.
- Szłapczyńska, J. (2012). Multicriteria weather routing algorithm (MEWRA) applied to marine weather forecast and analysis tool-NaviWeather by NavSimTM , European Navigational Conference (ENC), Gdynia, Poland, (submitted).
- Szłapczyński, R. (2006). A unified measure of collision risk derived from the concept of a ship domain, The Journal of Navigation 59(3): 477-490.
- Szłapczyński, R. (2011). Evolutionary sets of safe ship trajectories: A new approach to collision avoidance, The Journal of Navigation 64(1): 169-181.
- Szłapczyński, R. and Szłapczyńska, J. (2011). Evolutionary sets of safe ship trajectories: Problem dedicated operators, in P. Jędrzejowicz, N.T. Nguyen and K. Hoang (Eds.), Computational Collective Intelligence: Technologies and Applications, Part II, Lecture Notes in Artificial Intelligence, Vol. 6923, Springer-Verlag, Berlin/Heidelberg, pp. 231-240. Zbl1283.93320
- Troć, M. and Unold, O. (2010). Self-adaptation of parameters in a learning classifier system ensemble machine, International Journal of Applied Mathematics and Computer Science 20(1): 157-174, DOI: 10.2478/v10006-010-0012-8. Zbl1300.68047
- Tsou, M.C. and Hsueh, C.K. (2010). The study of ship collision avoidance route planning by ant colony algorithm, Journal of Marine Science and Technology 18(5): 746-756.
- Tsou, M.C., Kao, S.L. and Su, C.M. (2010). Decision support from genetic algorithms for ship collision avoidance route planning and alerts, The Journal of Navigation 63(1): 167-182.
- Xue, Y., Lee, B. and Han, D. (2009). Automatic collision avoidance of ships, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 223(1): 33-46.
- Zeng, X. (2003). Evolution of the safe path for ship navigation, Applied Artificial Intelligence 17(2): 87-104.