Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids

Didier Bresch; Jonas Koko

International Journal of Applied Mathematics and Computer Science (2006)

  • Volume: 16, Issue: 4, page 419-429
  • ISSN: 1641-876X

Abstract

top
We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid in rest.

How to cite

top

Bresch, Didier, and Koko, Jonas. "Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids." International Journal of Applied Mathematics and Computer Science 16.4 (2006): 419-429. <http://eudml.org/doc/207803>.

@article{Bresch2006,
abstract = {We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid in rest.},
author = {Bresch, Didier, Koko, Jonas},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {Navier-Stokes flows; duality; domain decomposition; conjugate gradient; Navier-Stokes equations},
language = {eng},
number = {4},
pages = {419-429},
title = {Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids},
url = {http://eudml.org/doc/207803},
volume = {16},
year = {2006},
}

TY - JOUR
AU - Bresch, Didier
AU - Koko, Jonas
TI - Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids
JO - International Journal of Applied Mathematics and Computer Science
PY - 2006
VL - 16
IS - 4
SP - 419
EP - 429
AB - We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid in rest.
LA - eng
KW - Navier-Stokes flows; duality; domain decomposition; conjugate gradient; Navier-Stokes equations
UR - http://eudml.org/doc/207803
ER -

References

top
  1. Bernardi C., Chacon T., Lewandowski R. and Murat F. (2002) A model for two coupled turbulent fluids I: Analysis of the system. - Nonlinear Partial Differential Equationsand Their Applications, Coll`ge de France Seminar, Vol. XIV (Paris,19971998), pp. 69-102, Stud. Math. Appl., Vol. 31, Amsterdam: North-Holland. Zbl1034.35106
  2. Bernardi C., Chacon T., Lewandowski R. and Murat F. (2003): A model for two coupled turbulent fluids II:Numerical analysis of a spectral discretization. - SIAM J. Numer. Anal.Vol. 40, No. 6, pp. 2368-2394. Zbl1129.76327
  3. Bernardi C., Chacon-Rebello T., Gomez-Marmol, Lewandowski R. and Murat F. (2004): A model for two coupled turbulent fluids III: Numerical approximation by finiteelements. - Numer. Math., Vol. 98, No. 1, pp. 33-66. Zbl1129.76326
  4. Bresch D. and Koko J. (2004): An optimization-based domain decomposition method for nonlinear wall laws in coupled systems. - Math. Models Meth. Appl. Sci., Vol. 14, No. 7, pp. 1085-1101. Zbl1185.65223
  5. Ciarlet P. (1979): The Finite Element Method for Elliptic Problems. - Amsterdam: North-Holland. 
  6. Daniel J. (1970): The approximate minimization of functionals. - Englewood Cliffs, NJ: Prentice-Hall. 
  7. Du Q. (2001): Optimization based non-overlapping domain decomposition algorithms and their convergence. - SIAM J. Numer. Anal., Vol. 39, No. 3, pp. 1056-1077. Zbl1004.65132
  8. Du Q. and Gunzburger M.D. (2000): A gradient method approach to optimization-based multidisciplinary simulations and nonverlapping domain decomposition algorithms. - SIAM J. Numer. Anal., Vol. 37,No. 5, pp. 1513-1541. Zbl0964.65142
  9. Ekeland I. and Temam R. (1999): Convex Analysis and Variational Problems. - Philadelphia: SIAM. Zbl0939.49002
  10. Glowinski R. (2003): Numerical Methods for Fluids, In: Handbook of Numerical Analysis,Vol. IX, (Ciarlet P.G. and Lions J.L., Eds.), Amsterdam: North-Holland. 
  11. Glowinski R. and Le Tallec P. (1989): Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. -Philadelphia: SIAM. Zbl0698.73001
  12. Glowinski R. and Marocco A. (1975): Sur l'approximation par éléments finis d'ordre un, et la résolution par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, RAIRO Anal. Num., Vol. 2, No. 2, pp. 41-76. Zbl0368.65053
  13. Glowinski R., Pan T.-W. and Periaux J. (1998): Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. - Comput. Meth. Appl. Mech. Eng., Vol. 151, No. 1-2, pp. 181-194. Zbl0916.76052
  14. Glowinski R., Pan T.W., Hesla T.I., Joseph D.D. and Periaux J. (2000): A distributed Lagrange multiplier fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. - Comput. Methods Appl. Mech. Eng., Vol. 184, No. 2-4, pp. 241-267. Zbl0970.76057
  15. Gunzburger M.D. and Peterson J. (1999): An optimization based domain decomposition method for partial differential equations. - Comp. Math. Appl., Vol. 37, No. 10, pp. 77-93. Zbl0941.65123
  16. Gunzburger M.D. and Lee H.K. (2000): An optimization-based domain decomposition method for Navier-Stokes equations. - SIAM J. Numer. Anal., Vol. 37, No. 5, pp. 1455-1480. Zbl1003.76024
  17. Koko J. (2002): An optimization based domain decomposition method for a bonded structure. - Math. Models Meth. Appl. Sci.,Vol. 12, No. 6, pp. 857-870. Zbl1205.74016
  18. Koko J. (2006): Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows. - J. Sci. Comput., Vol. 26,No. 2, pp.195-215. Zbl1203.76116
  19. Lewandowski R. (1997): Analyse Mathematique et Oceanographie. - Paris: Masson. 
  20. Lions J.L., Temam R. and Wang S. (1993): Models for the coupled atmosphere and ocean. (CAO I,II). - Comput. Mech. Adv., Vol. 1, No. 1, pp. 120. Zbl0805.76011
  21. Luenberger D. (1989): Linear and Nonlinear Programming. - Reading, MA: Addison Wesley. Zbl1134.90040
  22. Marchuk G.I. (1990): Splitting and alternating direction methods,In: Handbook of Numerical AnalysisVol. I, (Ciarlet P.G. and Lions J.L., Eds.). - Amsterdam: North-Holland,pp. 197-462. Zbl0875.65049
  23. Miglio E., Quarteroni A. and Saleri F. (2003): Coupling of free-surface and ground water flows. - Comput. Fluids,Vol. 32, No. 1, pp. 73-83. Zbl1035.76051
  24. Pan T.W., Joseph D.D. and Glowinski R. (2005): Simulating the dynamics of fluid-ellipsoid interactions. - Comput. Struct.,Vol. 83, No. 6-7, pp. 463-478. 
  25. Polak E. (1971): Computational Methods in Optimization. - New York: Academic Press. 
  26. Quarteroni A. and Valli A. (1999): Domain decomposition methods for partial differential equations. - Oxford: Oxford University Press. Zbl0931.65118
  27. Suquet P.M. (1988): Discontinuities and plasticity, In: Non-smooth Mechanicsand Applications, (Moreau J.J. and Panagiotopoulos P.D., Eds.). -CISM courses and lectures, New-York: Springer, No. 302, pp. 279-340. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.