Displaying similar documents to “Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids”

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun Xu, C. O. Chow, S. H. Lui (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations

Vivette Girault, Béatrice Rivière, Mary F. Wheeler (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.

Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems

Gert Lube (1994)

Banach Center Publications

Similarity:

In this paper, we analyze a class of stabilized finite element formulations used in computation of (i) second order elliptic boundary value problems (diffusion-convection-reaction model) and (ii) the Navier-Stokes problem (incompressible flow model). These stabilization techniques prevent numerical instabilities that might be generated by dominant convection/reaction terms in (i), (ii) or by inappropriate combinations of velocity/pressure interpolation functions in (ii). Stability and...

Finite element discretization of Darcy's equations with pressure dependent porosity

Vivette Girault, François Murat, Abner Salgado (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential,...